Curriculum Vitæ

The Ohio State University Office: (614) 292-8474

Materials Science and Engineering

140 West 19 Ave Email: ghazisaeidi.1@ osu.edu

Columbus, OH, 43210

Website: https://ghazisaeidigroup.engineering.osu.edu/

Appointments

2021 –2022 Visiting Associate Professor, EPFL, Switzerland. [On Sabbatical]

2019 - Present Associate Professor, Materials Science and Engineering, The Ohio State University.

2013 –2019 Assistant Professor, Materials Science and Engineering, The Ohio State University.

2017 – Present Assistant/Associate Professor by Courtesy, Department of Physics, The Ohio State University.

2011 – 2013 Postdoctoral Research Associate, School of Engineering, Brown University.

Education

2011	Ph.D.	University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
		Theoretical and Applied Mechanics.

2005 M.Sc. Sharif University of Technology, Tehran, Iran Mechanics of Solids and Structures.

2003 B.Sc. Sharif University of Technology, Tehran, Iran Civil Engineering.

Honors and Awards

2020	Rising Stars in Computational Materials Science Award.
2020	Faculty Diversity Award, College of Engineering, The Ohio State University.
2017	Lumley Research Award, College of Engineering, The Ohio State University.
2017	AFOSR Young Investigator Program award.
2015	NSF Faculty Early Career award (CAREER).

Research Grants

Current grants:

- 1. MURI: Dislocations as Interconnects for Spin Qubits. M. Ghazisaeidi (lead PI), Co-PIs: Giulia Galli (U Chicago), David Awschalom (U Chicago), Roberto Myers (OSU), Tyler Grassman (OSU); AFOSR (2023-2028)
- Dislocations as nature's quantum wires. M. Ghazisaeidi (PI) and Roberto Myers; AFOSR (2021– 2025)
- 3. Mechanisms of Deformation and Slip Transmission in Two Phase BCC/B2 Refractory High Entropy Alloys, M. Ghazisaeidi (PI) and M. J. Mills; DOE/BES (2021–2024)
- Compositional Dependence of Deformation Mechanisms Concentrated FCC Solid Solutions Sponsor, M. J. Mills (PI) and M. Ghazisaeidi; NSF/DMR (2019-2023)

- 5. DMREF-GOALI: Localized Phase Transformations (LPT) strengthening for next-generation superalloys, M. J. Mills (PI), M. Ghazisaeidi, Y. Wang and S. R. Niezgoda; NSF (2019-2023)
- 6. Center for Emergent Materials (OSU MRSEC), IRG1, Ohio State University (2020-2026).

Past grants:

- 1. Collaborative Research: Computational and experimental study of alloying effects on $\langle c+a \rangle$ slip in Mg alloys, M. Ghazisaeidi (PI) and Sharvan Kumar (Brown University); NSF/DMR (2017–2022)
- 2. CAREER: Understanding novel characteristics of defects in concentrated solid solutions from first principles calculations. M. Ghazisaeidi (PI); NSF/DMR (2016–2022)
- 3. Atomic Scale Computational and Experimental Investigation of Twinning Mechanisms in HCP Systems, M. Ghazisaeidi (PI) and M. J. Mills; DOE/BES (2014–2021)
- 4. Electronic Structure Basis for Solubility and Phase Stability in Metal Alloys, Maryam Ghazisaeidi (**PI**); AFOSR (2017–2021)
- 5. DMREF-GOALI: Mechanistic and Microstructure-Based Design Approach for Rapid Prototyping of Superalloys, M. J. Mills (PI), Y. Wang, M. Ghazisaeidi and S. R. Niezgoda; NSF (2015-2019)
- 6. Structure, Defects, and Emergent Properties at Magnetic Oxide Interfaces, Jinwoo Hwang (PI), Fengyuan Yang and M. Ghazisaeidi; Materials Research Seed Grant Program, Ohio State University (2017-2018)
- 7. Quantitative Determination of Dislocation Core Structure and Mobility Using Atomic Resolution Microscopy and Multiscale Modeling: Application to High Entropy Alloys, M. J. Mills (PI), P. M. Anderson and M. Ghazisaeidi; NSF/DMR (2015-2018)
- 8. Microstructure investigation of environmentally accelerated crack growth, G. B. Viswanathan (PI), M. J. Mills, M. Ghazisaeidi; Rolls-Royce North American Technologies (2015-2017).
- 9. CDMR-GOALI: Atomic Scale Modeling and Experimental Characterization of Non-Basal Deformation Modes in Mg Alloys, Sharvan Kumar, M. Ghazisaeidi and L. G. Hector Jr; NSF/CDMR (2013-2015)
- 10. First-principles study of dislocation core structures and properties in multi-principal-element alloys, Center for Emergent Materials, Ohio State University (2015-2016)

Plenary talks

ICSMA, Metz, France: Stacking fault energy in concentrated alloys 2022 Jun

World Congress on High Entropy Alloys, Charlotte, NC: "The interplay between phase transformation and mechanical properties in high entropy allovs"

Invited talks

- 2023 Jul Physical Metallurgy Gordon Research Conference:
 - "Stability and properties of refractory High entropy alloys"
- TMS, San Diego, CA: (1) "Phase prediction in multicomponent alloys" in Easo George Hon-2023 Mar orary symposium
 - (2)"First principles study of local phase transformation in Ni base superalloys"
- 2023 Mar APS March meeting, Las Vegas, NV:
 - "Multicell Monte Carlo method for phase prediction"
- 2022 Sep Virginia Tech MSE Seminar (Virtual visit): Phase transformation and deformation mechanisms in multicomponent alloys.
- 2022 Jul Computational Materials Science Gordon Research Conference, Maine, USA "Multicell Monte Carlo method for phase prediction"
- Canadian Materials Science Conference, SDi2 symposium (virtual): 2021 Jun "Stacking fault energy in concentrated alloys"
- 2021 Mar TMS(Virtual): (1) "Effect of bulk and local phase transformation on deformation mechanisms"
 - (2) "Multi-cell Monte Carlo method for phase prediction in multicomponent alloys"
- 2020 Oct University of Pennsylvania MSE Seminar (Virtual visit): The interplay between phase transformation and deformation mechanisms in multicomponent alloys.
- 2020 Feb TMS, San Diego, CA: Multi-cell Monte Carlo for Phase Prediction.
- 2019 Dec MRS Fall Meeting, Boston, MA: Atomic-Scale Deformation Mechanisms in FCC High-Entropy Allovs
- 2019 Sep University of Michigan MSE Seminar, Ann Arbor, MI: High entropy alloys: mechanical properties and phase stability.
- 2019 Mar TMS: San Antonio, TX:
 - (1) "Phase transformation strengthening in high entropy alloys"
 - (2) "Multi-cell Monte Carlo method for phase prediction in multicomponent alloys"
- 2019 Feb University of Florida, Gainesville, FL: High entropy alloys: mechanical properties and phase stability.
- 2018 Nov Case Western Reserve University Physics Seminar, Cleveland, OH: High entropy alloys: mechanical properties and phase stability.
- 2018 Oct Northwestern University MSE Seminar, Evanston, IL: High entropy alloys: mechanical properties and phase stability.
- 2018 Sep HexMat Workshop, University of Oxford, UK: Effect of solutes on twin nucleation and growth in Mg and Ti.
- 2018 Aug PRISM Workshop, Ann Arbor, MI: First principles of nonbasal deformation modes in Mg alloys
- TMS: Phoenix, AZ: 2018 Mar
 - (1) "New Observations of Phase Transformations During Deformation in Superalloys and High Entropy Alloys: Modeling"
 - (2) "Atomic Scale Modeling and Experimental Observations of Deformation Mechanisms in Ni Base Superalloys."
- 2018 Feb Schöntal Symposium on Dislocation-based Plasticity, Germany.
- 2018 Feb Sanibel Workshop on quantum chemistry and condensed matter physics St. Simons Island, GA
- 2018 Jan Brown University Seminar, Providence, RI.
- 2017 Jul Physical Metallurgy, Gordon Research Conference, Biddeford, ME.
- 2017 March TMS, San Diego, CA: Diffusion of oxygen interstitials near twin boundaries in Ti.

- 2017 MarMechanical Engineering colloquium, Johns Hopkins University, Baltimore, MD
- 2016 Sep Dislocations, West Lafavette, IN: First Principles modeling of $\langle c+a \rangle$ dislocations geometry and interactions with solutes in Mg alloys.
- Recent Advances in Computational Methods for Nanoscale Phenomena, Ann Arbor, MI: First 2016 Aug Principles modeling of $\langle c+a \rangle$ dislocations geometry and interactions with solutes in Mg alloys.
- PRISM Workshop, Ann Arbor, MI: First principles modeling of twinning in HCP systems 2016 Aug
- MS&T, Columbus, OH: First principles modeling of twinning in hcp systems 2015 Oct
- 2015 May ICMM4, Berkeley, CA: Atomic-scale investigation of deformation mechanisms in Mg and Ti allovs
- 2014 Oct SES, Purdue University, West Lafayette, IN: Atomic-scale investigation of deformation mechanisms in Mg Alloys
- OSU Materials Week (cross-cutting session), Columbus, OH: Materials behavior from first Mav principles: Atomic-scale investigation of deformation mechanisms in Mg Alloys
- Feb TMS, San Diego, CA: Twinning in Mg from first principles. Ohio State University, Columbus, OH: MSE Colloquium, Atomic-scale study of deformation mechanisms

Professional Activities

Editorial activities:

Associate Editor: Acta Materialia and Scripta Materialia (2021-Present) Editorial Advisory Board Member: Computational Materials Science (2021-Present), High Entropy Alloys and Materials (2021-Present).

Other activities:

Member of the Executive Committee: Center for Emergent Materials, OSU-MRSEC (2021-2022)

Outstanding Reviewer: Acta Materialia and Scripta Materialia (2019)

Faculty Mentor: 2019 Physical Metallurgy Gordon Research Seminar, Manchester, NH

Chair: 2011 Physical Metallurgy Gordon Research Seminar, Easton, MA

Refereed Publications

Link to Google Scholar Page

- 1. "Dislocations and natural quantum wires in diamond" S. Polat Genlik, RC Myers and M Ghazisaeidi Physical Review Materials 7 (2), 024601 (2023)
- 2. "First-principles calculations of the temperature dependence of stacking fault energies in Mg" J Brodie, M Ghazisaeidi Scripta Materialia 224, 115075 (2022)
- 3. "Localized phase transformation at stacking faults and mechanism-based alloy design" L Feng, SB Kannan, A Egan, T Smith, MJ Mills, M Ghazisaeidi, Y Wang Acta Materialia 240, 118287 (2022)
- 4. "A "local" stacking fault energy model for concentrated alloys" CR LaRosa, M Ghazisaeidi Acta Materialia 238, 118165 (2022)
- 5. "Local Phase Transformation Strengthening at Microtwin Boundaries in Nickel-Based Superalloys" AJ Egan, F Xue, Y Rao, G Sparks, E Marquis, M Ghazisaeidi, S Tin, Michael J Mills Acta Materialia 238, 118206 (2022)
- 6. "High-temperature deformation mechanisms in a BCC+ B2 refractory complex concentrated alloy" JP Couzinié, M Heczko, V Mazánová, ON Senkov, M Ghazisaeidi, Rajarshi Banerjee, Michael J Mills

Acta Materialia 233, 117995 (2022)

- 7. "Mechanistic Insight and Local Structure Evolution of NiPS3 upon Electrochemical Lithiation" C Choi, D Ashby, Y Rao, E Anber, JL Hart, D Butts, C Wilson, E Levin, Mitra Taheri, Maryam Ghazisaeidi, Bruce Dunn, Vicky Doan-Nguyen ACS Applied Materials and Interfaces 14 (3), 3980-3990 (2022)
- 8. "Role of deformation twinning in fatigue of CrCoNi medium-entropy alloy at room temperature" M Heczko, V Mazanova, CE Slone, M Shih, EP George, M Ghazisaeidi, Jaroslav Polak, Michael J Mills

Scripta Materialia **202**, 113985 (2021)

- 9. "Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy allov"
 - R Feng, Y Rao, C Liu, X Xie, D Yu, Y Chen, M Ghazisaeidi, T Ungar, Huamiao Wang, Ke An and Peter Liaw

Nature communications 12 (1), 1-10

- 10. "Stacking fault energy in concentrated alloys" M. Shih, J. Miao, M. J. Mills and M. Ghazisaeidi, Nature Communications 12 (1) 1–10 (2021).
- 11. "Quantitative prediction of Suzuki segregation at stacking faults of the γ' phase in Ni-base superallovs"
 - L. Feng, Y. Rao, M. Ghazisaeidi and M.J. Mills, Y. Wang, Acta Mater 200 223-235 (2020).

- 12. "Efficient determination of solid-state phase equilibrium with the multi-cell Monte Carlo method" E. Antillon and M. Ghazisaeidi, Physical Review E., 101 (6) 063306 (2020).
- 13. "Solute/Twin boundary interaction as a new atomic-scale mechanism for Dynamic Strain Aging", M. S. Hooshmand and M. Ghazisaeidi, Acta Mater., 188 711–719 (2020).
- 14. "The effect of solute cloud formation on the second order pyramidal to basal transition of $\langle c+a\rangle$ edge dislocations in Mg-Y solid solutions" D. Utt, A. Stukowski, M. Ghazisaeidi, Scripta Materialia., 182 53–56 (2020).
- 15. "An integrated experimental and computational study of diffusion and atomic mobility of the aluminum-magnesium system" Wei Zhong, M. S. Hooshmand, Maryam Ghazisaeidi, Wolfgang Windl, Ji-Cheng Zhao, Acta Mater., **189** 214–231 (2020).
- 16. "Data on the comprehensive first-principles diffusion study of the aluminum-magnesium system" M. S. Hooshmand, Wei Zhong, Ji-Cheng Zhao, Wolfgang Windl, Maryam Ghazisaeidi, Data in Brief, 105381 (2020).
- 17. "Deactivating deformation twinning in medium-entropy CrCoNi with small additions of aluminum and titanium" C.E. Slone, C.R. LaRosa, C.H. Zenk, E.P. George, M. Ghazisaeidi, M.J. Mills, Scripta Materialia, **178** 295–300 (2020).
- 18. "Anisotropic Magnetoresistance and Nontrivial Spin Hall Magnetoresistance in Pt/ α -Fe2O3 Bilayers" Y. Cheng, S. Yu, A. S. Ahmed, M. Zhu, Y. Rao, M. Ghazisaeidi, J. Hwang, Fengyuan Yang, Physical Review B **100** (22) 220408 (2019).
- 19. "Multi-Cell Monte Carlo method for phase prediction" C. Niu, Y. Rao, W. Windl and M. Ghazisaeidi, npj Computational Materials. 5(1) 1–5 (2019).
- 20. "Solid solution strengthening theories of high-entropy alloys" C.R. LaRosa, M. Shih, C. Varvenne, M. Ghazisaeidi, Materials Characterization, 151 310-317 (2019).
- 21. "Oxygen Diffusion Near (10-12) Twin Boundary in Titanium" M. S. Hooshmand, C. Niu, D. R. Trinkle and M. Ghazisaeidi Acta Materialia, 156, 11-19, (2018).
- 22. "Magnetically-driven phase transformation strengthening in high entropy alloys" C. Niu, C. LaRosa, J. Miao, M. J. Mills and M. Ghazisaeidi, Nature Communications, 9 1363, (2018).
- 23. "Segregation of Alloying Elements to Planar Faults in γ' -Ni3Al" Y. Rao, T. N. Smith, M. J. Mills and M. Ghazisaeidi, Acta Mater 148 173-184 (2018).
- 24. "Core structure and solute strengthening of second-order pyramidal $\langle c+a \rangle$ dislocations in Mg-Y D. Buey, L. G. Hector Jr and M. Ghazisaeidi, Acta Mater 147 1-9 (2018).
- 25. "Diffusion Processes During Creep at Intermediate Temperatures in a Ni-based Superalloy" T.M. Smith, Y. Rao, Y. Wang, M. Ghazisaeidi and M.J. Mills, Acta Mater 141 261?272 (2017).

- 26. "The Evolution of the Deformation Substructure in a Ni-Co-Cr Equiatomic Solid Solution Alloy" J. Miao, C. E. Slone, T. M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G. M. Pharr and M. J. Mills, Acta Mater 132 35–48 (2017).
- 27. "Atomistic modeling of dislocation interactions with twin boundaries in Ti" M. S. Hooshmand, M. J. Mills and M. Ghazisaeidi, Modelling Simul. Mater. Sci. Eng. 25(4) 045003 (2017).
- 28. "Multi-Cell Monte Carlo Relaxation Method for Predicting Phase Stability of Alloys" C. Niu, W. Windl and M. Ghazisaeidi, Scripta Mater, 132 9–12 (2017).
- 29. "Solute Strengthening in Random Alloys" C. Varvenne, G. P. M. Leyson, M. Ghazisaeidi and W. A. Curtin, Acta Mater, 124 660–683 (2017).
- 30. "Atomic-Scale characterization and Modeling of 60 degree Dislocations in a High-Entropy Alloy" T. M. smith, M. S. Hooshmand, B. D. Esser, F. Otto, D. W. McComb, E. P. George, M. Ghazisaeidi and M. J. Mills, *Acta Mater.* **110** 352-363 (2016).
- 31. "Atomistic simulation of $\langle c+a \rangle$ screw dislocation cross-slip in Mg" D. Buey and M. Ghazisaeidi, Scripta Mater 117 51-54 (2016).
- 32. "A new mechanism for twin growth in Mg alloys" A. Luque, M. Ghazisaeidi and W. A. Curtin, Acta Mater 81 442-456 (2014).
- 33. "Solute strengthening of twinning dislocations in Mg alloys" M. Ghazisaeidi, L. G. Hector Jr. and W. A. Curtin, Acta Mater 80 278-287 (2014).
- 34. "Interaction of oxygen interstitials with lattice faults in Ti" M. Ghazisaeidi and D. R. Trinkle, Acta Mater. 76, 82-86 (2014).
- 35. "First-principles structure of $\langle c+a \rangle$ edge and screw dislocations in Mg" M. Ghazisaeidi, L. G. Hector Jr. and W. A. Curtin, Scripta Mater. 75, 42-45 (2014).
- 36. "Analysis of dissociation of $\langle c \rangle$ and $\langle c + a \rangle$ dislocations to nucleate (10-12) twins in Mg" M. Ghazisaeidi and W. A. Curtin, Modelling Simul. Mater. Sci. Eng. 21, 055007 (2013).
- 37. "Deformation modes in Mg (0001) and (01-11) single crystals: simulations vs. experiments" A. Luque, M. Ghazisaeidi and W. A. Curtin, Modelling Simul. Mater. Sci. Eng. 21, 045010 (2013).
- 38. "Core structure of a screw dislocation in Ti from density functional theory and classical potentials" M. Ghazisaeidi and D. R. Trinkle, Acta Materialia 60, 1287-1292 (2012).
- 39. "Lattice Green's function for crystals containing a planar interface" M. Ghazisaeidi and D. R. Trinkle. *Physical Review B* **82**, 064115 (2010).
- 40. "Convergence rate for numerical computation of the lattice Green's function" M. Ghazisaeidi and D. R. Trinkle, *Physical Review E* 79, 037701 (2009).
- 41. "Statistical characterization of surface defects created by Ar ion bombardment of crystalline silicon" M. Ghazisaeidi, J. B. Freund, and H. T. Johnson, Journal of Applied Physics, 104, 054304 (2008).

- 42. "Single impact crater functions for ion bombardment of silicon" N. Kalyanasundaram, M. Ghazisaeidi, J. B. Freund, and H. T. Johnson, Applied Physics Letters, **92**, 131909 (2008).
- 43. "Effects of couple stresses on anti-plane problems of piezoelectric media with inhomogeneities" H. M. Shodja, M. Ghazisaeidi, European Journal of Mechanics A: Solids, 26(4), 647-658 (2007).

Teaching

All courses are taught at OSU

2023 -	Defects in Crystalline Materials, upper graduate level.
2022 -	Quantitative Introduction to Materials Science, for first year graduate students without
	MSE backgrounds.
2020 -	Quantitative Introduction to Materials Science.
$2016 \ \ 2021$	Advanced Atomistic Modeling, upper graduate level.
$2014 \ 2020$	Structures and Defects, graduate core course, responsible for the second half of the
	course on Defects.
$2013 \ \ 2019$	Fracture and Fatigue, senior undergraduate/early graduate course.
$2015 \ \ 2017$	Composite Materials, senior undergraduate/early graduate course.
$2015 \ \ 2019$	Modeling and simulation lab II, undergraduate computer lab, (Last 4 weeks), OSU.

Adminstrative Service

2019 - 2023	Chair of the Graduate Admissions Committee.
2014 - 2023	Member of the Graduate Studies Committee.
2017 - 2019	Member of the Diversity and Inclusion Committee.
2013 and 201	18 Organizer of the MSE Department Colloquiua.

Professional Memberships

- TMS (The Minerals, Metals and Materials Society).

Current Advisees

Julian Brodie (PhD, 2018–Present) Sevim Polat Genlik (PhD, 2018–Present) Junxin Wang (PhD, 2020–Present) Ali Barooni (PhD, 2023-Present) Dr. Harsha Gunda (Postdoc, 2022-Present)

Former group members

Mulaine Shih (PhD, 2016–2021), First job after graduation: AFRL Carlyn LaRosa (PhD, 2016–2020), First job after graduation: AFRL You Rao (PhD, 2015–2020), First job after graduation: Postdoc at EPFL Mohammad Shahriar Hooshmand (PhD, 2014–2019), First job after graduation: Postdoc at UC Berkeley Daniel Buey (PhD, 2013–2018), First job after graduation: Lecturer at The Ohio State University Changning Niu (Postdoc, 09/2015–04/2018), Now at QuesTek Edwin Antillon (Postdoc, 09/2018–09/2019), Now at the Naval Research Lab