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ABSTRACT

A signal of opportunity (SOP)-aided inertial navigation
system (INS) framework is presented and studied. The
following problem is studied. A mobile receiver with ac-
cess to global navigation satellite system (GNSS) signals
is aiding its onboard INS with GNSS pseudoranges. While
navigating, the receiver draws pseudorange observations
on ambient unknown terrestrial SOPs and estimates the
SOPs’ states. GNSS signals become unavailable, at which
point the receiver uses the SOPs to aid its INS. It is demon-
strated that fusing SOP pseudoranges in a tightly-coupled
GNSS-SOP-INS framework produces a superior naviga-
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tion solution to a traditional tightly-coupled GNSS-INS
framework. Moreover, in the absence of GNSS signals,
it is demonstrated that aiding the INS via SOPs pro-
duces bounded estimation errors. The SOP-aided INS’s
performance sensitivity is studied over varying quantity
and quality of exploited SOPs. Experimental results are
presented demonstrating a ground vehicle navigating ex-
clusively with inertial measurement unit (IMU) data and
pseudoranges from an unknown terrestrial SOP emanating
from a cellular tower.

I. INTRODUCTION

Traditional navigation systems integrate global navigation
satellite system (GNSS) with an inertial navigation system
(INS). When these systems are integrated, the long-term
stability of a GNSS navigation solution complements the
short-term accuracy of an INS. However, it is well known
that if GNSS signals become unavailable, the errors of an
INS diverge. Recently, signals of opportunity (SOPs) have
been considered to enable navigation whenever GNSS sig-
nals become inaccessible or unreliable [1-6]. Future nav-
igation systems could rely on SOPs to aid an INS in the
absence of GNSS signals, enabling a navigation solution
with bounded errors.

Architectures to fuse GNSS and inertial measurement
unit (IMU) measurements with loosely-coupled, tightly-
coupled, and deeply-coupled estimators, are well-studied
[7]. Regardless of the coupling type, the errors of a GNSS-
aided INS will diverge in the absence of GNSS signals,
and the rate of divergence depends on the quality of the
IMU. Consumer and small-size applications that use af-
fordable micro-electro-mechanical systems (MEMS) grade
IMUs are particularly susceptible to large error divergence
rates. While high quality IMUs may reduce the rate of er-
ror divergence, they may violate cost, size, weight, and/or
power constraints.

Current trends to supplement a navigation system in the
event that GNSS signals become unreliable are tradition-
ally sensor-based (e.g., cameras [8], lasers [9], and sonar
[10]). Recently, SOPs (e.g., AM/FM radio [11,12], cellular
[13-17], digital television [18,19], iridium [20,21], and Wi-
Fi [22,23]) have been studied as a complement to GNSS
or a stand-alone alternative. However, using SOPs as an
aiding source for an INS received little attention. In [24],
a board-mounted transceiver equipped with an IMU was
presented along with experimental results demonstrating
the use of SOP Doppler measurements to aid an INS. How-
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ever, details of the framework were obscure. This paper
characterizes the performance of a tightly-coupled frame-
work that fuses IMU data with SOP pseudoranges along
with GNSS pseudoranges (when available).

SOPs are transmitted at a wide range of frequencies and di-
rections, making them an attractive supplement to GNSS
signals to improve the accuracy of a navigation solution
[16,17]. SOPs are abundant in GNSS-challenged environ-
ments, making them particularly attractive aiding sources
for an INS when GNSS signals become unreliable. How-
ever, unlike GNSS satellite vehicle (SV) states, the states
of SOPs, namely their position and clock states, may not
be known a prior: and must be estimated. This estimation
problem is analogous to the simultaneous localization and
mapping (SLAM) problem in robotics [25]. Both problems
ask if it is possible for an agent to start at an unknown lo-
cation in an unknown environment and then to incremen-
tally build a map of the environment while simultaneously
localizing itself within this map. However, in contrast to
the static environmental map of the typical SLAM prob-
lem, the SOP signal map is more complex— it is dynamic
and stochastic. Specifically, for pseudorange-only observa-
tions, one must estimate not only the position states, but
also the clock states of both the receiver and the SOPs
[26,27].

This paper considers the following practical problem. A
mobile receiver, whether hand-held or vehicle-mounted,
has access to GNSS SV observables, multiple unknown
terrestrial SOPs, and IMU measurements, which are uti-
lized to estimate the receiver’s states, (position, velocity,
clock bias, and clock drift) and the SOPs’ states, (posi-
tions, clock biases, and clock drifts). Suddenly, GNSS
pseudoranges become unavailable, and the receiver con-
tinues drawing pseudorange observations from the SOP
transmitters. The receiver continues navigating by fusing
the SOP pseudoranges with IMU measurements through a
dynamic estimator, which simultaneously maps the SOPs’
states and localizes the receiver in that map using a pro-
posed SOP-aided INS framework. This paper studies the
performance of the SOP-aided INS by addressing the fol-
lowing two fundamental questions on uncertainty bounds
of the receiver’s state estimates: (1) How are the uncer-
tainty bounds affected by varying the number of exploited
SOPs? (2) How sensitive are the uncertainty bounds to
the the stability of the SOPs’ oscillators?

The remainder of this paper is organized as follows. Sec-
tion IT describes the dynamics model of the SOPs and nav-
igating vehicle as well as the receiver’s observation model.
Section IIT describes the SOP-aided INS framework and
presents simulation results. Section IV presents a perfor-
mance sensitivity analysis of the SOP-aided INS frame-
work over varying quantity and quality of exploited SOPs.
Section V presents experimental results demonstrating a
ground vehicle navigating with cellular signals using the

SOP-aided INS framework. Concluding remarks are given
in Section VL.

II. MODEL DESCRIPTION
A. SOP Dynamics Model

Each SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter, and its state vector
will consist of its three-dimensional (3D) position states

A T A
Tsop = [Tsops Ysops Zsop) and clock states Xoksop =

{c&tsop, Cé.tsop} , where c is the speed of light, dtsp is the
clock bias, and dtyp is the clock drift [28].

The SOP’s discretized dynamics are given by

Tsop (K + 1) = Feop Tsop (k) + weop(k), k=1,2,...,

-
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where xgop = [rsop, ccclk’sop} , Foop = diag[Isxs, Fol,
Wsop 1S the process noise, which is modeled as a discrete-
time (DT) zero-mean white noise sequence with covariance

Qsop = dlag [03><37 C2chk,sop]7 and

1 T Sﬁ}&tsopT_FS@(it‘ %3 Sﬁ’é'tv TTZ
FClk: 0 1 7QC1k,SOp: T_Qsop sop s

Wstsop 2 "I’a'tsop
where 7' is the constant sampling interval. The terms
Siws.., and Sy, are the clock bias and drift process

80 sop

noise power spectra, respectively, which can be related
to the power-law coefficients, {hq }>__,, which have been
shown through laboratory experiments to characterize the
power spectral density of the fractional frequency devia-
tion of an oscillator from nominal frequency according to

Sa ~ % and Sm&tsop ~ 27T2h—2 [29]

Steop

B. Vehicle Dynamics Model

The vehicle-mounted navigating receiver’s state vector x,
is comprised of the INS states p and the receiver’s clock

9T
states ik, r £ {c&h c5tT] , l.e., x,. = [mg, mzlk T]

The INS 16-state vector is
_ T
rp = [qua TI? 'U;!—, b;v bl—} )

where r, and v, are the 3-D position and velocity, respec-
tively, of the body frame expressed in a global frame, e.g.,
the Earth-centered Earth-fixed (ECEF) frame; b, and b,
are the gyroscope and accelerometer biases, respectively;
and g(j is the 4-D unit quaternion in vector-scalar form
which represents the orientation of the body frame with
respect to a global frame [30].

The orientation of the INS will evolve in DT according to

Bykt1 - _ Bry1 = o By =
G q_Bk q®qua



where g:“q represents the relative rotation in the body
frame from time-step k to k + 1, gkq represents the ori-
entation of the body frame in a global frame at time-step
k, and ® is the quaternion multiplication operator. The
unit quaternion g:“q is the solution to the differential
equation

. 1 [-[Pw(t)x] Bw(t)
B; = B, —
qu = 5 —BUJT(t 0 qua t e [tkvtk+1]a
where t;, £ kT. The vector Bw £ [wa,Bwy,sz]T is

the 3-D rotational rate vector, whereas the matrix |Pwx |
is the skew symmetric matrix representation of the vec-
tor Bw. The velocity will evolve in time according to the
integration

tht1
v.(k+1) =v.(k) —|—/ “a(r)dr
tr
where “a is the 3-D acceleration of the IMU in the global

frame. The position will evolve in time according to the
integration

rolk+1) = ro(k) + / o (r)dr

tr

The evolution of b, and b, will be modeled as random
walk processes, i.e., b, = w, and b, = w, with E[w,] =
Elw,] = 0, cov[wg] = o7, I3, and covlw,] = o7, I3. The
above attitude, position, and velocity models are discussed
in [31].

The receiver’s clock states will evolve in time according to
Zeik,r(k+ 1) = Foxex,r (k) + we(k),

where w,k is the process noise vector, which is modeled
as a DT zero-mean white noise sequence with covariance
Qcix,», which is identical to Qcik sop, €xcept that Sﬂ?atmp
and Sy 510y A€ TOW replaced with receiver-specific spectra,

Sas,, and Sy, respectively.

C. IMU Measurement Model

The IMU contains a triad-gyroscope and a triad-

. A
accelerometer which produce measurements zj,, =
T

T 1T .
i @ , which are modeled as

[w o)

B
Wimu = " w + by +ny

Aimu = R[gk‘ﬂ (Ga - Gg) + ba + N,

where R|[q] is the equivalent rotation matrix of g, “g is
the acceleration due to gravity in the global frame, and n,
and n, are measurement noise vectors, which are modeled
as zero-mean white noise sequences with covariances Qg
and Q,, respectively.

D. Receiver Observation Model

The pseudorange observation made by the receiver on the
m™ SOP, after discretization and mild approximations dis-
cussed in [28], is related to the receiver’s and SOPs’ states

Zsop,y, () = lr-(j) — TSOPmHQ
+ c - [6tT (-7) - 5tSOPm (])} + Usopm (.7)7 (1)

where vsop ~is modeled as a DT zero-mean white Gaus-
sian sequence with variance aszopm. The pseudorange ob-
servation made by the receiver on the n*® GNSS SV, after
compensating for ionospheric and tropospheric delays is

related to the receiver states by

Zsv, (1) = |I7r(5) = 7w, (4) |2
+ ¢ - [0tr(4) — Otsv, (3)] + vsv,, (4), (2)

Ay
where, Zsv, = Rev, T cOtiono — Céttropo, Otiono and 6ttropo

are the ionospheric and tropospheric delays, respectively,

2! is the uncorrected pseudorange, and v, is modeled
SV, ’ n

as a DT zero-mean white Gaussian sequence with variance
2

Usvn .

III. SOP-AIDED INERTIAL NAVIGATION

In this section, the SOP-aided INS framework is described
and simulation results are presented to demonstrate the
framework’s performance in a practical scenario.

A. Problem Formulation

Consider a navigating vehicle, which is equipped with a
GNSS-aided INS and a receiver capable of producing pseu-
doranges to M unknown SOPs. The goal of the proposed
SOP-aided INS framework is twofold. First, when GNSS
pseudoranges are available, SOP pseudoranges will supple-
ment the GNSS-aided INS to improve the accuracy of the
navigation solution. Second, when GNSS pseudoranges
become unavailable, SOP pseudoranges will be used exclu-
sively as an aiding source to correct the accumulating er-
rors of the INS. To exploit SOPs for navigation, their states
must be known [32-34]. However, in many practical sce-
narios the SOP transmitter positions are unknown. Fur-
thermore, the SOPs’ clock states are dynamic and stochas-
tic; therefore, they must be continuously estimated. To
tackle these problems, the SOP-aided INS framework will
adapt a SLAM-type strategy that operates in a mapping
mode when GNSS psuedoranges are available and a SLAM
mode when GNSS pseudoranges are unavailable.

B. Framework

To correct INS errors using SOP pseudoranges, an ex-
tended Kalman filter (EKF) framework similar to a tra-
ditional tightly-coupled GNSS-INS integration strategy is



adopted, with the added complexity that the SOPs’ states,
denoted {wsopm }7]\::1, are simultaneously estimated along-
side the navigating vehicle’s states. To simplify the follow-
ing discussion, consider a scenario where GNSS pseudor-
anges are available during ¢ € [0, ) (mapping mode) and
unavailable during ¢ € [¢g,00) (SLAM mode), where tg is
the instant GNSS pseudoranges become unavailable.

B.1 EKF State Model

During the mapping mode, the EKF produces an estimate
&(k|j) £ Elz(k)|{z(i)}]_,] of z(k), and an associated esti-
mation error covariance Py (k|j) = E[Z(k|j)Z " (k|j)] where

T T
A T T T A T T
= |, msoplv'-'vmsopM] y 2= [zsva zsop}
T T
Zsv = [Zsviy+ - ) Zsvn] 5 Zsop = [ZSOPN cee ZSOPM} )

k > 7, and j is the last time step an INS-aiding source was
available. The EKF error state is defined as

-
T ~T }
)

2 | 4T r
(3)

~, ~T ~T ~T
z TB, wclk,w Irsop17 wclk,sop17 s Usopyy wclk,sopM

- o+ 1 T T

rp = [OT ,,,;!' ’U,,T b;— bl] 5
where 8 € R3 is the 3-axis error angle vector. The posi-
tion, velocity, and clock errors are defined as the standard

.. ~ A ~ . .
additive error, e.g., Psop, = Tsop, — Tsop, L he orientation
error is related through the quaternion product

8q=¢q®iq,

where the error quaternion ¢q is the small deviation of the
estimate gfl from the true orientation gq and is given by

:
|1 1. -
5q—[20,1/1 1° 0] :

During the SLAM mode, zg, is no longer available, there-
fore, the receiver’s clock states @i, no longer need to
be estimated. However, the relative biases Adty, = 0, —
Otsop,., m = 1,..., M, will now be estimated. Therefore,

) . M
at to, the states Zck, and {mclk,sopm}mﬂ are removed
from the estimator, and the relative clock state estimates
AZ,, are initialized as

s 4T
Ady, = [Aétm,mstm} ,m=1,..M (4

where

Aty £ 6ty — tsop, ,  Adty 2 0ty — Stgop .
The estimation error of the new state vector ' and the
corresponding estimation error covariance are initialized

according to
z' =Tz,

P, = TP,T',

where T is the transformation matrix which maps @ from
(3) to

~ T =T ~T T T 1T
& =[xp, v, ATy, T, Az, ]
A high-level diagram of this framework is illustrated in

Fig. 1.

EKF Prediction l P(jj) | T Tightly-coupled
) (514
Inertial Navigation (517 EKF z Detector
System ﬁ,}.(’)( k) Update g _
P(kl5)
Zimu Zsy Zsop data
MU GPS —lppg| SOP
Receiver Receiver

Fig. 1. SOP-aided INS framework. The flag indicates if the SOP-
aided INS operates in the mapping mode: V=% and P = Pg; or
the SLAM mode: #() =&/ and P = P,,/.

B.2 Propagation

Between aiding updates, the INS uses zjy,, and the dy-
namics discussed in Section II to propagate the estimate
(either & or &) and produce the corresponding prediction
error covariance. During the mapping mode, the one-step
prediction error covariance is given by

Py (k +1j) = FPL(k|))F +Q, (5)
F 2 diag [‘I)Bv Fox, Fsopa ceey Fsop] y
Q £ diag [QdBu C2chk,r7 Qsopa ) Qsop} .

The propagation of &g and calculation of the DT lin-
earized INS state transition matrix ® g and process noise
covariance Qdp are performed through standard INS
equations as described in [35, 36].

During the SLAM mode, the prediction error covariance
P, (k 4+ 1]j) has the same form as (5), except that F is
replaced with F/ £ diag [® 5, Fsop, - - -, Fsop] and Q is re-
placed with Q' £ TQTT. The process noise covariance
Q.lk,, of the initialized states (4) is readily shown to be
Qaik,, = Qcik,r + Qelksop,,, m=1,..., M.

B.3 Update

When an INS-aiding source is available, the EKF update
step will correct the INS and clock errors using the stan-
dard EKF update equations [37]. In the mapping mode,

. N T T 1T . . .
ie, z £ [z, zsop] , the corresponding Jacobian is
H=[H], H ]
- [ sV sop} 9



5 T
O1x3 15, Oixo hg, Oixsnm
H,, = : : : : : )
T T
O1x3 15, Oixo hg Oixsum

O1x3 171 . O1xo hly Hep, -+ 0

sop
HSO = : : . : . . :
1% . . . . . . . ?
1T T
O1 X3 ]'SOPM O1 X9 hclk 0 . HSOpM

N e

A T 2 A
Te—ro e = L O deop, =

Tr—Tsop -y iT T
m, and Hsopm = _1SOpm’ _hclk:| . The update

will produce the posterior estimate &(j|j) and an associ-
ated posterior estimation error covariance Py (j|7).

where 1,

In the SLAM mode, only SOP pseudoranges are available,
i.e., 2 = zsop. The adjusted measurement Jacobian is

T /
O1x3 1gp, Oixg Hsop - 0
! . . .
H = . . . . . . ?
1T /
O1x3  1gp,, Oixo 0 o Hsop,,

/ 4 1T
where H'sop = | =15,

the posterior estimate &'(j|j) and an associated posterior
estimation error covariance Py (j|7).

h-crlk}. The update will produce

C. Simulation results

In this subsection the estimation performance of the SOP-
aided INS framework is analyzed using a simulator which
generated (i) the “ground truth” states of the navigating
vehicle, (ii) the SOPs’ states, (iii) noise-corrupted IMU
measurements of specific force and angular rates, and (iv)
noise-corrupted pseudoranges to multiple SOPs and GPS
SVs. Details of this simulator are provided next. Sub-
sequently, estimation results produced by the SOP-aided
INS are compared to estimation results produced by a tra-
ditional GPS-aided INS.

C.1 Simulator

The IMU signal generator models a triad gyroscope and
a triad accelerometer. The data y;(¢) for the i axis of
the gyroscope and accelerometer were generated at 100Hz
according to

yi(t) = (1+ex,)- [ui(t) +bi(t) +nrra, +1Q, +NrRW, +NRR,],

where w;(t) is either the vehicle’s actual acceleration or
angular rotation rate for axis i, €, is the scale factor, b;(t)
is a random bias which is driven by the bias instability,
1M A, is the misalignment, 7¢ is quantization noise, nrrw,
is rate random walk, and ngg, is rate ramp [38]. The
magnitude of these errors and their driving statistics are
determined by the grade of the IMU. Data for a consumer-
grade and tactical-grade IMU were generated for this work.

GPS L1 C/A pseudoranges were generated at 1 Hz ac-
cording to (2) using SV orbits produced from Receiver In-
dependent Exchange (RINEX) files downloaded on June
1, 2016 from a Continuously Operating Reference Station
(CORS) server [39]. SOP pseudoranges were generated at
5 Hz according to (1) and the SOP dynamics discussed in
Subsection II-B.

The simulated trajectory corresponded to an aerial vehi-
cle and included two straight segments, a climb, and a
repeating orbit, performed over a 200 second period. This
trajectory was generated using a standard six degree of
freedom (6DoF) kinematic model for airplanes [36]. Ex-
cluding trajectories generated in a closed-loop fashion so
to optimize the vehicle’s and SOPs’ estimates [40,41], this
type of open-loop trajectory has been demonstrated to pro-
duce better estimates than an open-loop random trajec-
tory [42,43].

C.2 Results

Two estimation frameworks were employed to estimate
the states of the navigating vehicle: (i) the SOP-aided
INS equipped with a consumer-grade IMU and (ii) a tra-
ditional tightly-coupled GPS-aided INS equipped with a
tactical-grade IMU. For both estimation frameworks GPS
pseudoranges were set to be available for ¢t € [0,100),
and unavailable for ¢ € [100,200]. The initial errors
of the navigating vehicle’s states were initialized accord-
ing to #,(0|0) ~ N [017x1, P4, (0|0)], where P (0]0) =
dlag [(10_2) . ngg, 9- ngg, ngg, (10_4) . IG><67 9, 1] For
the SOP-aided INS framework, the SOP state es-
timates were initialized according to ®sp, (0[0) ~
N [@sop, (0), Psop(0[0)], for m = 1,...,M, where

L
Zoop,, (0) = [rL,  10410] . Pup(00) = (10%) -

diag[1, 1, 1, 0.1, 0.01], and the positions {rsop,m}fr/f:l
were surveyed from SOP cellular tower locations in down-
town Los Angeles. The simulated trajectory, SOP posi-
tions, and the position at which GPS was set to become
unavailable are illustrated in Fig. 2.

Navigating vehicle's trajectory

SOP Iocation GPS cut off location

~cfl DRy

Fig. 2. True trajectory the aerial vehicle traversed (yellow) and SOP
locations (blue pins).



The resulting estimation error trajectories and correspond-
ing 30 bounds (blue) for the position, velocity, and atti-
tude of the receiver and the position of one of the SOPs are
plotted in Figs. 3 (a)-(1). The plots in Figs. 4 (a) and (b)
correspond to the estimation errors of the receiver’s clock
states with GPS available and the plots in Figs. 4 (c)
and (d) correspond to the estimation errors of one of the
SOP’s clock states while GPS was available. Figs. 4 (e)
and (f) correspond to the estimation errors of the relative
biases and drifts that were initialized when GPS became
unavailable, as was described in Subsection ITI-B.

50' 160 150 200- 0- } 50 160 150 200

Time ] Time ]
Fig. 3. The results of two simulations are illustrated. In both simu-
lations, a navigating aerial vehicle had access to GPS pseudoranges
for only the first 100 seconds while traversing the trajectory illus-
trated in Fig. 2. In the first simulation, a tightly-coupled GPS-INS
integration strategy using a tactical-grade IMU produced the estima-
tion error trajectories and corresponding 3o bounds (black). In the
second simulation, the SOP-aided INS framework produced the esti-
mation error trajectories and corresponding 30 bounds (blue). The
error and 30 bound oscillations coincide with the repeating circular
path of the vehicle. North, East, and down (NED) errors are shown
for position and velocity. Roll, pitch, and yaw (rpy) errors are shown
for the orientation.

For a comparative analysis, the same navigating vehicle
used a traditional tightly-coupled GPS-INS integration
strategy with a tactical-grade IMU to estimate its states.
The resulting position, velocity, and attitude estimation
error trajectories and corresponding 30 bounds (black) are
plotted in Figs. 3 (a)-(i).

[ GPS-aided INS: _Error

140 160 180 120 140 160 180 200

Fig. 4. Estimation error trajectories and 3¢ bounds for the clock
states of the SOP-aided INS framework (blue) and traditional GPS-
aided INS (black). (a) and (b) correspond to the receiver’s clock
states while GPS was available and (c) and (d) correspond to the
SOP’s clock states while GPS was available. (e) and (f) correspond
to A2y, during the SLAM mode. The 3¢ bound oscillations in (e)
and (f) coincide with the repeating circular path of the vehicle.

The following may be concluded from these plots. First,
when GPS pseudoranges become unavailable at t = 100
seconds, the estimation error variances associated with
the traditional GPS-INS integration strategy begin to di-
verge, as expected, whereas a bound can be established
for the errors associated with the SOP-aided INS. Second,
the SOP-aided INS with a consumer-grade IMU almost
always yields lower estimation error variances when com-
pared to the traditional GPS-INS integration strategy with
a tactical-grade IMU.

IV. PERFORMANCE SENSITIVITY ANALY-
SIS

In the section, the performance sensitivity of the SOP-
aided INS framework is studied for a varying quantity and
quality of exploited SOPs.

A. Quantity of SOPs

To study the performance sensitivity of the SOP-aided
INS framework over a varying number of SOPs, the states
of the navigating vehicle, all available SOPs, and noise-
corrupted measurements were generated using the simula-
tor and settings described in Section III-C. Five separate
simulation runs were conducted. For each simulation, the



states of the navigating vehicle were estimated. The first
three runs employed the SOP-aided INS with a consumer-
grade IMU and M = 2,...,4 SOPs. The last two runs,
employed a traditional tightly-coupled GPS-INS integra-
tion strategy (M = 0) with (i) a tactical-grade IMU and
(ii) a consumer-grade IMU. Fig. 5 illustrates the resulting
logarithm of the determinant of the estimation error co-
variance for each run, which is proportional to the volume
of the estimation uncertainty ellipsoid [42]. Fig. 5 (a) cor-
responds to the attitude (log{det [Pg4]}), whereas Fig. 5
(b) corresponds to the position (log {det [P, ]}).

(a) —M=0
GPS cut off —M=4
-15

log {det [Py,

. | |

0 25 50 75 100 125 150 175 200
Time [s]

Fig. 5.  An aerial navigating vehicle traverses the trajectory illus-
trated in Fig. 2. GPS pseudoranges become unavailable at 100s
(red dotted line) and the vehicle continues to navigate by fusing INS
estimates and pseudoranges from M SOPs using the framework il-
lustrated in Fig. 1. Figures (a) and (b) correspond to the logarithm
of the determinant of the estimation error covariance for attitude,
and position, respectively, for exploiting a varying number of SOPs
in the navigating receiver’s vicinity. The two curves for M = 0 corre-
spond to a traditional tightly-coupled GPS-aided INS equipped with
a tactical-grade IMU (purple) and consumer-grade IMU (green).

The following may be concluded from these plots. First,
the estimation uncertainties produced by the SOP-aided
INS associated with both gq and 7, are reduced when
M is increased. The sensitivity of the estimation uncer-
tainty of gq and 7, to varying M is captured by the dis-
tance between the log {det [P4]} and log {det [P, ]} tra-
jectories, respectively. Second, although the SOP-aided
INS used a consumer-grade IMU, the resulting estimation
uncertainty of r,. for M = 2,...,4 is always lower when
compared to the resulting estimation uncertainty produced
by a traditional tightly-coupled GPS-INS using a tactical-
grade IMU. Third, although the GPS-INS equipped with
a tactical-grade IMU produces a lower estimation uncer-
tainty of Zq while GPS is available, the uncertainty begins

to diverge when GPS becomes unavailable. This uncer-
tainty becomes larger than the uncertainties produced by
the SOP-aided INS, for which a bound may be specified
for M =2,...,4.

B. Quality of SOPs

In this subsection, the performance sensitivity of the SOP-
aided INS framework is studied over varying qualities of
SOPs. This work defines the SOP quality as the stability
of the oscillator that is equipped on the SOP transmitter.
The stability of the oscillator is characterized by the pa-
rameters of Qciksop as described in Subsection II-A. Four
simulations were conducted using the simulator and set-
tings described in Section III-C. The resulting 30 bounds
for exploiting four SOPs, which were assumed to all be
equipped with a worst temperature-compensated crystal
oscillator (TCXO) (black), typical TCXO (green), typical
oven-controlled crystal oscillator (OCXO) (blue), and best
OCXO (purple), are plotted in Fig. 6. The four grades of
oscillators considered and their characterizing parameters
are tabulated in Table I.

Worst TCXO - - Typical TCXO

Typical OCXO

~-=-= Best 0CXO

0 20 40 60 80 100 120 140 160 180 200

Seconds 3|

Fig. 6. An aerial navigating vehicle traverses the trajectory illus-
trated in Fig. 2. GPS pseudoranges become unavailable at 100s (red
dotted line) and the vehicle continues to navigate using the frame-
work illustrated in Fig. 1. Figures (a)-(f) correspond to the 3o
bounds for exploiting SOPs equipped with a worst TCXO (black),
typical TCXO (green), typical OCXO (blue), and best OCXO (pur-
ple). North, East, and up (NED) position and velocity errors are
shown for the worst TCXO (red) and best OCXO (orange).

From these plots it may be concluded that sensitivity of
the estimation performance to the quality of oscillator was
minimal while GPS was available. When GPS pseudor-
anges are unavailable, the estimation performance is sig-
nificantly more sensitive to the quality of the oscillator,



TABLE I
QUALITY OF SOPs: OSCILLATOR TYPE

Parameter Value

Worst TCXO {hos, h-2s}  {2.0x 10719, 2.0 x 1072}
Typical TCXO {hos, h—2} {9.4x 10720, 3.8 x 1021}
Typical OCXO {hos, h—2s} {8.0x 10720, 4.0 x 10723}
Best OCXO {hos, h—2} {2.6 x 10722, 4.0 x 10726}

and the sensitivity is captured by the distance between
the 30 trajectories. Although the uncertainty in the esti-
mates were larger when SOPs were equipped with a worst
TCXO, a bound may still be established.

V. EXPERIMENTAL RESULTS

A field experiment was conducted using an IMU and a soft-
ware defined receiver (SDR) to demonstrate the SOP-aided
INS framework discussed in Section III-B. To this end, two
antennas were mounted on a vehicle to acquire and track
multiple GPS signals and a cellular base transceiver sta-
tion (BTS) whose signals were modulated through code
division multiple access (CDMA). The GPS and cellular
signals were simultaneously downmixed and synchronously
sampled via a two-channel National Instruments® univer-
sal software radio peripheral (USRP). This front-end fed
the data to the Multichannel Adaptive TRansceiver Infor-
mation eXtractor (MATRIX) SDR, which produced pseu-
dorange observables from all GPS L1 C/A signals in view,
and the cellular BTS [14]. The IMU data was sampled
from a navigation system developed at the University of
California, Riverside (UCR), which is equipped with: (i) a
consumer-grade IMU, (ii) a tactical-grade IMU, and (iii)
a u-blox® GPS receiver. Fig. 7 depicts the experimental
hardware setup.

Experimental results are presented for two estimators:
(i) the proposed SOP-aided INS using the consumer-
grade IMU and (ii) for comparative analysis, a traditional
tightly-coupled GPS-INS using the consumer-grade IMU.
For both estimators, GPS pseudoranges were available for
only the first 16 seconds of the 30 second run. The ground
truth trajectory was generated with a common GPS-INS
EKF using the u-blox GPS receiver and the tactical-grade
IMU. Fig. 8 is an illustration of the true and estimated ve-
hicle trajectories, the true and estimated tower locations,
and the North-East 99*"-percentile initial and final uncer-
tainty ellipses. The North-East root mean squared error
(RMSE) of the traditional tightly-coupled GPS-INS’s navi-
gation solution after GPS became unavailable was 23.5 me-
ters. The SOP-aided INS produced a trajectory estimate
with an RMSE of 9.42 meters and a final BTS localization
error of 15.5 meters. Ir is worth noting that for longer pe-
riods of GPS unavailability, the RMSE reduction from the

SOP-aided INS will be even more significant, since the er-
rors of the unaided INS will diverge, while the SOP-aided
INS errors are expected to remain bounded.

GPS and cellular antennas

Universal software radio peripheral (USRP)

=l

MATRIX
LabVIEW-Based SDR

4

MATLAB-Based
Filter

GPS cut off
location

Final and initial
uncertainty ellipses

¥ Trajectories

True (GPS)
INS only
SOP-aided INS

Fig. 8. Experimental results

VI. CONCLUSION

This paper presented and studied an SOP-aided INS
framework. The performance of the framework was com-
pared against a traditional tightly-coupled GNSS-INS inte-
gration strategy and the performance sensitivity was stud-
ied by varying the quantity and quality of exploited SOPs.
It was demonstrated that a bound could be established
on the estimation errors in the absence of GNSS. The
SOP-aided INS using a consumer-grade IMU was shown
to produced estimation uncertainties lower than a tra-
ditional tightly-coupled GNSS-INS using a tactical-grade
IMU when two, three, or four SOPs were exploited. Fur-
thermore, it was shown that SOPs equipped with low-
quality oscillators may serve as effective INS-aiding sources
to establish a bound on INS errors in the absence of



GNSS. Moreover, experimental results demonstrated a ve-
hicle navigating with the SOP-aided INS framework in the
absence of GNSS, which yielded an RMSE reduction of
59.9% when compared to an unaided INS.
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