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Extremely large telescopes (ELTs) are the next generation of ground-based reflecting
telescopes of optical wavelengths. ELTs possess an aperture of more than 20 meters and
share a number of common features, particularly the use of a segmented primary mirror
and adaptive optics systems. In 2005, the European Southern Observatory introduced a
new giant telescope concept, named the European Extremely Large Telescope (E-ELT),
which is scheduled for operation in 2018. In 2009, a feasibility study proved the feasibility
of the real-time (RT) control system architecture for the E-ELT’s primary mirror, which
consists of nearly 1,000 mirror segments with 3,000 actuators and 6,000 sensors. The goal
of the RT control system was to maintain a perfectly aligned field of mirrors at all times
with a loop-time of 1 ms. The study assumed a prescribed controller algorithm. This
paper prescribes two such controllers. In this respect, optimal controller designs for the
primary mirror, where optimality is formulated in the H2 and H∞ frameworks are derived.
Moreover, the designed controllers are simulated to show that the desired performance,
which is defined in terms of imaging requirements, is met.

I. Introduction

Modern astronomical research requires investigating extremely faint objects that have small angular di-
ameters. Large aperture telescopes provide higher spatial and spectral resolution that enables the detection
of the astronomical objects in question. Early hints about how stars and galaxies formed are being discovered
with the deployment of large ground and space telescopes. By pushing the capabilities of ground telescopes
to their limits using extremely large telescopes (ELTs), astronomers are hoping to answer several lingering
questions about our universe.

At the present time, the world’s largest telescope is the Keck telescope. The Keck’s primary mirror is
10 meters (m) in diameter. It consists of 36 hexagonal segments, which are adjusted twice per minute to
compensate for gravity and other environmental effects as the telescope moves.1

In the 1990s, a consortium of universities proposed the first of the next generation of ELTs, the California
Extremely Large Telescope (CELT), which was renamed the Thirty Meter Telescope (TMT).2 The design of
the TMT has a 30 m segmented primary mirror consisting of 492 segments with the out-of-plane degrees of
freedom (DOF) actively controlled. Three precise position actuators, placed behind each segment, maintain
the segment in-phase with its neighbors to a small fraction of light wavelength. Also, the TMT has a 3 m
secondary mirror requiring 5 DOF control.3

Since 2005, the European Southern Observatory (ESO) has been defining a new ELT named the European
Extremely Large Telescope (E-ELT).4 The E-ELT will address key scientific challenges and will aim for
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a number of notable firsts, including discovering Earth-like planets around other stars in the “habitable
zones” where life could exist. Other answers the E-ELT will attempt to uncover include understanding the
relationship between black holes and galaxies, measuring the properties of the first stars and galaxies, and
probing the nature of dark matter and dark energy. An artist’s depiction of the E-ELT is illustrated in
Figure 1.

Figure 1. Artist depiction of the E-ELT.

The E-ELT primary segmented mirror, denoted as M1, consists of 984 hexagonal mirrors each weighing
nearly 150 kg with diameters of 1.4 m for a total 42 m in diameter. In comparison, the diameter of the
primary mirror of the Hubble Space Telescope is 2.4 m. In the M1 operation, adjacent mirror segments may
tilt with respect to each other. This deviation is monitored using edge sensors. Actuator legs can move the
segment 3 degrees in any direction. The 984 mirror segments comprise a system of 3,000 actuators and 6,000
sensors. Controlling the system of mirrors requires a vast amount of processing capability.

Since the control system design can impact the construction characteristics of the telescope, it is critical
to assess the feasibility of the proposed control system architecture. For this purpose, a two-step study is
conducted. The first study is to build a real-time (RT) simulation of the M1 mirror to perform hardware-
in-the-loop (HIL) testing. The goal is to maintain a perfectly aligned field of mirrors at all times with a
loop-time of 1 ms. For the purposes of HIL testing, the controller algorithm was assumed to be prescribed.
Consequently, a case study was conducted to verify the feasibility of the control system architecture using
LabVIEW deployed to a multi-core PC running LabVIEW RT Module.5 The architecture incorporated
two Dell Workstations, each with eight cores and a notebook that provided an operator interface. One
Workstation simulated the telescope, whereas the other Workstation simulated the controller algorithm.
The HIL M1 simulator is depicted in Figure 2. The required computational power was provided by multi-
core implementations and supplemented by graphical processing units (GPUs) and field-programmable gate
arrays (FPGAs). The study concluded that within the specified 1 ms loop-time, it is feasible to obtain the
sensor data, send the data to the controller, compute the control signal, and send the control signal to the
actuators.6

The second study is the topic of this paper, where we focus on prescribing optimal controller designs
with a desired performance defined in terms of imaging requirements. In this respect, optimal controller
designs for M1, where optimality is formulated in the H2 and H∞ frameworks are derived. Moreover, the
closed-loop system comprised of the designed controllers, telescope dynamics, and exogenous disturbances,
is simulated.

This paper is organized as follows. Section II discusses the optical design of the E-ELT and models the
M1 mirror. Sections III and IV formulate the H2 and H∞ control design problems, respectively. Section V
presents open- and closed-loop simulations of the overall system. Concluding remarks and future work are
discussed in Section VI.
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Figure 2. Hardware-in-the-loop M1 simulator

II. System Modeling

A. Optical design

The concept for the E-ELT is a telescope whose primary mirror is 42 m in diameter covering a field on the
sky about a tenth the size of the full Moon. The optical design, depicted in Figure 3, is based on a five-mirror
scheme that results in an exceptional image quality. The primary mirror consists of 984 segments, each 1.4
m wide, but only 50 mm thick. The E-ELT control system includes control loops for positioning the primary
and secondary mirrors and control loops for adaptive optics. The crucial factor that determines the imaging
quality is the performance of the primary mirror control system, which is the topic of this paper.

Figure 3. E-ELT optical system

B. Structure of the primary mirror system

On the back of each M1 mirror segment, 3 displacement actuators are installed to provide 3 out-of-plane
DOF: piston, tip, and tilt. Moreover, each segment is equipped with 6 precision capacitive edge sensors that
measure the relative surface displacements between adjacent segments. The optimal choice of the segment
size is a function of several factors. Smaller segments are easier to support against gravity, easier to handle,
and allow fewer optical surfaces to be used. However, smaller segments require more actuators and edge
sensors besides other disadvantages.7
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In this paper, we formulate and solve theH2 andH∞ optimal control design problem of the seven-segment
system illustrated in Figure 4. The control of the entire telescope becomes an extension of the seven-segment
system to as many segments the telescope possesses.
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Figure 4. Seven-segment system

C. Dynamics of the primary mirror system

We adopt a nodal model to describe the dynamics of the mirror segments.8 In particular, our model consists
of localized masses mounted on springs and dampers and is governed by the differential equations

Mq̈+Dq̇+ Jq = Bww +Buu,

where q ∈ Rnd , q̇ ∈ Rnd , and q̈ ∈ Rnd are the nodal displacements, velocities, and accelerations, respectively;
M ∈ Rnd×nd is the mass matrix, D ∈ Rnd×nd is the damping matrix, J ∈ Rnd×nd is the stiffness matrix,
w ∈ Rnw is the disturbance to the system, u ∈ Rnu is the control force, and nd is the number of DOF the
system has (3 in this case), nw is the number of disturbances affecting the system, and nu is the number
control forces applied to the system. To simplify the modeling procedure, we assume that the supporting
foundation is fixed and each segment is supported by three springs with damping.

We define the state vector of the ith segment as xi !
[

qT
i q̇T

i

]T

. Consequently, the nodal representa-

tion can be converted into the state-space representation

ẋi =Aixi+B1,iwi+B2,iui,

where

Ai =

[

0 I

−M−1
i Ji −M−1

i Di

]

, B1,i =

[

0

−M−1
i Bw,i

]

, B2,i =

[

0

−M−1
i Bu,i

]

,

where xi ∈ R6 is the segment state vector, wi denotes the disturbance inputs, and ui denotes the control
forces on the ith segment. Finally, the dynamics of the complete system with n+1 segments is expressed as

ẋ = Ax+B1w+B2u, (1)

where
A= diag

[

A0 · · · An

]

, Bi= diag
[

Bi,0 · · · Bi,n

]

, i∈{1, 2}

x=
[

xT
0 · · · xT

n

]T

, w=
[

wT
0 · · · wT

n

]T

, u=
[

uT
0 · · · uT

n

]T

.
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D. Wind disturbance

The disturbances that affect the primary mirror system can be categorized into optical wavefront distur-
bances from the atmosphere and mechanical disturbances. The mechanical disturbance sources include
gravity deformations, thermal variations, wind, and vibrations from drives and motors. Among these, wind
disturbances are very significant to the operation of a large segmented telescope, and if we can reject these
disturbances, the other sources can be readily addressed. For dynamic wind disturbances, we adopt the Von
Karman model with the wind pressure power spectral density (PSD) given by

ΦνK
pt (f) =

CνK
pt

[

1 + ( f
f0
)2
]

7

6

.

We note that the PSD is fully defined by two parameters, the magnitude CνK
pt and the bandwidth f0.

For most wind disturbances, the bandwidth is 1 Hz,.9 Based on empirical measured wind PSD, we can
identify CνK

pt = 10.10 Moreover, based on least-squares estimate (LSE) method we can reconstruct the wind
disturbance by passing white noise through a filter with transfer function (TF) Wwn(s) and a corresponding
state-space realization given as

ξ̇i = Aξi ξi +Bξi w0i , wi = Cξi ξi,

where w0i is the input white noise to the reconstruction filter and wi is the output of the filter. The Bode
magnitude plot of such system is illustrated in Figure 5, which closely matches the measured PSD of wind
disturbances.8
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Figure 5. Bode magnitude plot of wind disturbance reconstruction filter

For simplicity, we assume that the wind disturbance is applied equally to the three supporting points;
hence, the noise disturbance model affecting n+ 1 segments of the telescope is given by

ξ̇ = Aξ ξ +Bξ w0, w = Cξ ξ, (2)

Aξ = diag
[

Aξ0 · · · Aξn

]

, Bξ = diag
[

Bξ0 · · · Bξn

]

, Cξ = diag
[

Cξ0 · · · Cξn

]

ξ=
[

ξ0 · · · ξTn

]T

, w0=
[

wT
00 · · · wT

0n

]T

, w=
[

wT
0 · · · wT

n

]T

.

E. Edge sensor model

Ideally, the relative displacements between the adjacent segments should be controlled to be less than one
tenth of the operating wavelength. At this accuracy level, the best solution is to sense the position of each
segment edge with respect to those of its neighbors. Typically, two edge sensors are required per edge to
provide the relative height and twist of adjacent segments. For control design purposes, we will assume that
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the outputs that become locally available from sensing at each segment, i, are the direct displacements of
the three supporting points, i.e.

yi = Cixi, Ci =
[

I3×3 03×3

]

,

where for simplicity, we assume that the measurement noise is negligible, which is motivated by the fact
that it is of smaller magnitude as compared to the wind disturbance. Hence, if we can address the wind
disturbance issue, adding the noise model of the sensors in the design process should be straightforward.

Combining the measurements for the n+ 1 segments, yields the measurement equation

y = Cx, C = diag
[

C0 · · · Cn

]

. (3)

Numerical values for the system matrices are given in the Appendix.

F. Imaging performance requirements

For an optical system, the imaging performance is characterized by its point spread function, i.e. the light
intensity distribution resulting from a point source. However, such function is two-dimensional and is very
complex. For convenience, we adopt a commonly used practical criterion known as the Strehl ratio. The
Strehl ratio is the ratio of the peak intensity in the actual image compared to the peak theoretical diffraction
intensity. According to the Maréchal rule, an optical system is considered diffraction limited if the Strehl
ratio is 0.8.1 To maintain a Strehl ratio greater than 0.7, we have to control the relative displacements of
the segments at the 0.1 µm order.8

III. Optimal H2 Controller Design for a Seven-Segment System

This section formulates the H2 optimal controller design problem for a seven-segment system. We assume
that the control system block diagram is arranged into the standard P−K configuration shown Figure 6.
Here, w represent the exogenous signals, z represent the signals of interest, y represent the measured outputs,
and u represent the control signals. The P block contains all the uncontrolled dynamics, which include the
system dynamics, actuator dynamics, and various pre-designed filters. The K block contains the controller
to be designed.11

w z

u y
P

K

Figure 6. Standard control block diagram configuration

A. Optimal H2 Control Theory

Lemma 1 The problem of finding a state-feedback control law that minimizes the linear quadratic objective
subject to the dynamics of a linear time-invariant system, i.e.

minimize J =

∫

∞

0

[

xT(t) uT(t)
]

[

Q S

ST R

][

x(t)

u(t)

]

dt

subject to ẋ = Ax+B2u, u ∈ L2,
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where Q = QT $ 0, R = RT % 0, and

[

Q S

ST R

]

$ 0 is equivalent to the optimization problem, defined as

minimize J = ‖z‖22 = ‖C1x+D12u‖
2
2 (4)

subject to ẋ = Ax+B2u, u ∈ L2,

where Q = CT
1C1, R = DT

12D12, S = CT
1D12, and z is the signal of interest whose H2-norm is to be

minimized.

Theorem 1 Given a plant in the general feedback formulation shown in Figure 6, with

ẋ = Ax+B1w +B2u

z = C1x+D12u

y = C2x+D21w,

where x ∈ Rn, w ∈ Rnw , u ∈ Rnu , y ∈ Rny are the plant states, exogenous inputs, control inputs, and plant
outputs, respectively. Assume that (A,B2) is stabilizable, (A,C1) is detectable, and (A,C2) is detectable.
Define the Hamiltonian matrices

H2 =

[

A−B2D
T
12C1 −B2B

T
2

−CT
1C1 −(A−B2D

T
12C1)T

]

J2 =

[

AT −CT
2D21B

T
1 −CT

2C2

−B1B
T
1 −(AT −CT

2D12B1)T

]

.

Define the Riccati equation solutions associated with the Hamiltonian matrices H2 and J2 by XR = Ric(H2)
and YR = Ric(J2), respectively. Define the controller gain and observer gains respectively as

F2 = −
[

BT
2XR +DT

12C1

]

, L2 = −
[

YRC
T
2 +B1D

T
21

]

.

Then, the H2 optimal controller K(s) to problem (4) has a state-space realization given by

K(s) ∼

[

A+B2F2 + L2C2 −L2

F2 0

]

.

Moreover, the controller K(s) minimizes the H2 norm of the transfer function between the exogenous inputs
w and signals of interest z, ‖Fzw‖22.

B. Optimal H2 problem formulation

The state-space model for a seven-segment system was expressed in Equations (1) and (3). Since we are
assuming that we are measuring the direct (absolute) displacements, but the primary objective is to regulate
the relative displacements between adjacent segments to zero, we define the variable of primary interest, z1,
as

z1 = Cz1x,

where Cz1 ∈ R6×6 is the mapping matrix from the state vector x that describes the displacements and
velocities of the supporting points to the relative displacements between adjacent segments. The mapping
matrix Cz1 can be readily determined from the geometry of the segmented mirror system and has the
structure

Cz1 =
[

Cz1,1 06×3

]

.

The block diagram that describes the control system for our particular system is shown in Figure 7. The
control problem objective is to align seven segments to form a smooth larger segment with minimal efforts.

To formulate the augmented plant shown in Figure 7 into the standard P−K block diagram formulation
illustrated in Figure 6, we define the exogenous signals and signal of interest respectively as w̃ !w0 and
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w

u y

P

K

Wwn
w0 z1

u

G Cz1

x

Figure 7. Block diagram of system with augmented plant

z̃ !
[

zT1 uT

]T

.

Consequently, the dynamics of the resulting control system block diagram depicted in Figure 6 is given
by

χ̇=Ãχ+ B̃1 w̃ + B̃2 u, z̃=C̃1 χ+ D̃12 u, y=C2 χ,

where χ ! [xT ξT]T ∈ R84, w̃ ∈ R21, u ∈ R21, z̃ ∈ R84, and y ∈ R21, and the system matrices are given by

Ã=

[

A B1Cξ

0 Aξ

]

, B̃1=

[

0

Bξ

]

, B̃2=

[

B2

0

]

, C2=
[

C 0
]

C̃1 =
[

C̄1C̄z1 0
]

, C̄1=

[

¯̄C1

0

]

, D̃12 =

[

D̄12

0

]

,

C̄z1 =diag[Cz1 , . . . ,Cz1 ], where in the formulation above the LQR “tuning” matrices are ¯̄C1 = ¯̄CT
1 $ 0 and

¯̄C1 ∈ R42×42; D̄12 = D̄T
12 % 0 and D̄12 ∈ R21×21.

IV. Optimal H∞ Controller Design for a Seven-Segment System

This section formulates the H∞ optimal controller design problem for a seven-segment system. As in
Section III, we assume the standard P−K block diagram configuration.

A. Optimal H∞ Control Theory

It is known that the solution to the H∞ controller design problem is not unique.12 There are several
ways to derive an H∞ controller. One approach is through a Youla parametrization of the closed loop.
However, this often leads to a very high-order controller. Another approach is through an optimization-
based reformulation of the Riccati equation that uses linear matrix inequalities. A third approach is through
a Riccati-based approach that solves two Riccati equations to find the sub-optimal controller. While the
third approach requires several simplifying assumptions, we will adopt this approach as these assumptions
are readily satisfied in our formulation.11

Theorem 2 Given a plant in the general feedback formulation shown in Figure 6, with

ẋ = Ax+B1w +B2u, z=C1x+D11w +D12u

y = C2x+D21w +D22u,

where x ∈ Rn, w ∈ Rnw , u ∈ Rnu , y ∈ Rny are the plant states, exogenous inputs, control inputs, and
plant outputs, respectively. Assume that (A,B2) is stabilizable, (A,C1) is detectable, (A,C2) is detectable,
D11 = 0, D22 = 0, DT

12C1 = 0, DT
12D12 = I, B1D

T
21 = 0, and D21D

T
21 = I. Given γ ∈ R++. Then, there

exists an admissible controller with ||Fzw||∞ < γ if and only if
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• X∞ = Ric(H∞) $ 0 for

H∞ =

[

A γ−2B1B
T
1 −B2B

T
2

−CT
1C1 −AT

]

.

• Y∞ = Ric(J∞) $ 0 for

J∞ =

[

AT γ−2CT
1C1 −CT

2C2

−B1B
T
1 −A

]

.

• ρ(X∞Y∞) < γ2.

Further, if the above hold, then the H∞ optimal controller K(s) has a state-space realization given by

K(s) ∼

[

Â∞ −Z∞L∞

F∞ 0

]

,

Â∞ =A+ γ−2B1B
T

1X∞ +B2F∞ + Z∞L∞C2

F∞ =−BT

2X∞, L∞=−Y∞CT

2 , Z∞=
[

I−γ−2Y∞X∞

]−1
.

B. Optimal H∞ problem formulation

Due to the system setup assumed in Theorem 2, we will consider the augmented plant shown in Figure 8.
Consequently, we will formulate this augmented plant into the standard P−K configuration in Figure 6.
For formulation purposes, we will assume that there is an additive sensor noise v0 and we will design the
H∞ controller accordingly. However, when simulating the closed-loop system, we will “turn off” such sensor
noise for meaningful comparison against the H2 design.

w

u y

P

K

Wwn
w0 z1

u

G Cz1

x

+

+
v0

Figure 8. Block diagram of system with augmented plant

To this end, we define the exogenous signals and signal of interest respectively as w̃ !
[

wT
0 vT

0

]T

and

z̃ !
[

zT1 uT

]T

. Hence, the dynamics of the resulting control system is

χ̇ = Ãχ+ B̃1w̃ + B̃2u, z̃ = C̃1χ+ D̃12 u, y = C2χ +D21w,

where χ ! [xT ξT]T ∈ R84, w̃ ∈ R42, u ∈ R21, z̃ ∈ R84, y ∈ R21, and the system matrices are D21 =
[

0 I
]

,

Ã=

[

A B1Cξ

0 Aξ

]

, B̃1=

[

0 0

Bξ 0

]

, B̃2=

[

B2

0

]

, C2=
[

C 0
]

C̃1 =
[

C̄z1 0
]

, C̄z1=diag[Cz1 . . .Cz1 ], D̃12=

[

0

I

]

.
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V. Simulations and Results

This section presents open-loop plant analysis and closed-loop system simulations with the designed H2

and H∞ controllers to achieve stabilization of the mirror segments in the presence of wind disturbances. The
objective of the control system is to keep the relative displacements between the segments to within 0.1 µm
in accordance with the imaging performance requirement (see Section II.F).

A. Open-Loop Plant Analysis

The seven-segment mirror system was constructed and its poles, zeros, and stability were investigated. The
system was found to be stable, strictly proper, with no zeros, and with 42 poles. Then, the system was
simulated in open-loop configuration, where the initial condition for the positions of the 3 supporting points
of each segments were set to be 1 µm. Figure 9 shows the relative displacements between segments 0 and 1.
It is clear that the desired imaging performance is not achievable. Similar observations were made for other
mirror segments.

Figure 9. Relative displacement without control

B. Optimal H2 and H∞ Control Simulations

The LQR tuning matrices for H2 control were set to ¯̄C1 = α I42×42 and D̄12 = β I21×21, where α ∈ R+ and
β ∈ R++ are the tuning parameters. The tuning parameters α and β were set to 1 and 5×10−4, respectively.

In designing the H∞ controller, we iterated on the parameter γ starting from the initial iterate γ(0) = 1
and used the bisection update rule with terminating criterion being the violation of any of the necessary
and sufficient conditions for existence of an admissible controller. The corresponding γ was found to be
γ = 0.0078.

Figure 10(a) and 10(b) show the relative displacement between segments 0 and 1 for the H2 and H∞

closed-loop control system, respectively. It is clear that the desired imaging performance was achieved with
the designed controllers. It is noted that H2 achieved slightly better results. This issue can be addressed by
introducing appropriate “weighting” filters and consequently adjusting the signal of interest z so that both
controllers perform comparably. Similar observations were made for other mirror segments.

VI. Conclusion and Future Work

This paper derived optimal control laws for a segmented telescope system, where optimality was defined
in the H2 and H∞ frameworks. The objective of the control system was to align the segments of the tele-
scope to achieve a desired imaging performance, in the presence of wind disturbances. It was noticed that
the designed H2 and H∞ optimal controllers achieved the desired specifications, which were not achievable
in open-loop.
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Figure 10. Relative displacement with H2 and H∞ control

Future research is required to make the control system robust to other external disturbances, such as
sensor measurement noise, wavefront disturbances, gravity deformations, etc. Moreover, robustness issues
with respect to modeling uncertainties and plant parameters mismatches need to be addressed. Finally, fault
detection, isolation, and recovery (FDIR) techniques need to be put in place for robust operation against
potential system faults.

Appendix

Ai=

[

0 I

Γ ∆

]

, Γ=







−625.075 −180.943 −180.943

−180.943 −625.075 −180.943

−180.943 −180.943 −625.075







B1,i=B2,i =





















0 0 0

0 0 0

0 0 0

0.2194 0.0635 0.0635

0.0635 0.2194 0.0635

0.0635 0.0635 0.2194





















Ci=
[

I3×3 03×3

]

, ∆=







−0.219 −0.064 −0.064

−0.064 −0.219 −0.064

−0.064 −0.064 −0.219







Cz1,i=





















1.6667 −0.7778 0.1111 0 0 0

1.6667 0.1111 −0.7778 0 0 0

0.1111 1.6667 −0.7778 0 0 0

−0.7778 1.6667 0.1111 0 0 0

−0.7778 0.1111 1.6667 0 0 0

0.1111 −0.7778 1.6667 0 0 0





















.

Aξi =

[

−11.04 −8.36

1 0

]

, Bξi =

[

1

0

]

, Cξi =
[

1.69 26.44
]

.
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