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ABSTRACT

This paper proposes a framework for unmanned aerial vehicle (UAV) navigation using carrier phase differential
cellular (CD-cellular) measurements. The framework requires no prior knowledge of the UAV’s position and achieves
centimeter-level position accuracy. A batch weighted nonlinear least-squares estimator is developed to solve for the
integer ambiguities and an extended Kalman filter is formulated to initialize the batch estimator. Monte Carlo
simulations are presented to characterize the performance of the proposed framework as a function of the total
number of hearable cellular base transceiver stations (BTSs) and the size of the batch estimator. Experimental
results are presented demonstrating a UAV navigating exclusively using the proposed framework over a 1.72 km
trajectory completed in 3 minutes with 62.11 cm root mean-square error (RMSE).

I. INTRODUCTION

The potential of signals of opportunity (SOPs) (e.g., AM/FM radio [1, 2], iridium satellite signals [3, 4], WiFi [5, 6],
and cellular [7–10]) as alternative navigation sources to global navigation satellite signal (GNSS) has been the subject
of extensive research recently. Navigation with SOPs has been demonstrated on ground vehicles and unmanned aerial
vehicles (UAVs), achieving a positioning accuracy ranging from meters to tens of meters, with the latter accuracy
corresponding to ground vehicles in deep urban canyons with severe multipath conditions [11–14]. Cellular SOPs
possess particularly desirable attributes for navigation. First, when fused with GNSS signals, cellular signals have
been shown to significantly reduce the vertical dilution of precision (VDOP) [14–16]. Second, cellular signals can
be used as an aiding source instead of GNSS signals to aid an inertial navigation system [17–20]. Third, cellular
signals can be fused with lidar, significantly reducing the computational burden associated with maintaining the
lidar’s point cloud by using only a very small fraction of these points, while achieving lane-level accuracy on ground
vehicles [21, 22].

Cellular signals are typically transmitted at a very high power, in several bands, and in several channels within
each band, which aggregates to tens of megahertz in bandwidth on the radio frequency (RF) spectrum. Therefore,
jamming or spoofing all cellular signals simultaneously requires sophisticated hardware and impractically large power,
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which is practically impossible. If only a few bands or channels become the target of a jamming or spoofing attack,
a cellular navigation receiver may switch to a different band or channel, maintaining the capability of producing
a reliable navigation solution at all time. Software-defined radios (SDRs) enable the development of cellular SOP
navigation receivers with such capabilities [23–26].

Besides cellular SOPs’ attractive attributes against jamming and spoofing attacks, they may yield a precise navigation
solution if one exploits their carrier phase. This technique is well known in GNSS and sub-meter-level (centimeter
to decimeter) is common in carrier phase differential GNSS (CDGNSS), also known as real-time kinematic (RTK)
[27,28]. The first study of cellular carrier phase-based navigation was conducted in [29], in which the received carrier
phase of cellular code-division multiple access (CDMA) signals was exploited to produce sub-meter-level accurate
navigation solutions on a UAV. The paper proposed two navigation frameworks: the first is based on carrier phase
differential measurements, requiring an additional base receiver, and the second leveraged the relative frequency
stability of cellular base transceiver station (BTS) clocks, alleviating the need of such base receiver. Although the
second approach is attractive for single UAV navigation, it may not yield sub-meter-level navigation accuracy if
the relative drift between BTS clocks is not small enough, a requirement that is not necessarily met in all cellular
networks.

While the first approach is robust against poor BTS synchronization, one may argue that the need for a base receiver
could pose a practical limitation. However, considering the need for a resilient and accurate position, navigation, and
timing (PNT) alternative to GNSS in future UAV applications (e.g., package delivery, environmental monitoring,
search and rescue, etc.), installing a dedicated carrier phase differential cellular (CD-cellular) network is lucrative.
Recent advances in SDRs and embedded computing pave the road to making such networks for precise UAV navigation
a reality.

This paper makes four contributions. First, a CD-cellular navigation framework is developed for cellular signals and
a method for resolving carrier phase ambiguities is discussed. Second, the proposed framework is evaluated through
Monte Carlo simulations. Third, important design considerations of a practical CD-cellular navigation network and
their effect on the navigation performance are studied, namely: 1) the number of bases needed to cover a given
cellular SOP environment and the base placement that maximizes availability, 2) communication requirements and
synchronization of CD-cellular measurements shared between the bases and navigating UAVs, and 3) hardware
and software consideration for real-time implementation. Fourth, experimental results are presented demonstrating
a UAV navigating exclusively with CD-cellular measurements for 3 minutes and over a 1.7 km trajectory with a
position root-mean squared error (RMSE) of 62.11 centimeters.

The rest of the paper is organized as follows. Section II describes the carrier phase measurement model and the
pseudorange model parameterized by the receiver and BTS states. Section III describes the CD-cellular navigation
framework. Section IV provides Monte Carlo simulation results to assess the performance of the proposed framework.
Section V provides a preliminary CD-cellular network design analysis and software and hardware considerations for
real-time implementation of a CD-cellular network. SectionVI shows experimental results demonstrating centimeter-
level-accurate UAV navigation via the proposed CD-cellular framework. Concluding remarks are given in Section
VII.

II. MODEL DESCRIPTION

A. UAV-MOUNTED RECEIVER DYNAMICS MODEL

The navigating UAV-mounted receiver state consists of its unknown two-dimensional (2–D) position rrU , [xrU , yrU ]
T

and velocity ṙrU . An altimeter may be used to estimate the UAV’s altitude. The subsequent analysis may be readily
extended to 3–D; however, the vertical position estimate will suffer from large uncertainties due to the poor vertical

diversity of cellular SOPs. Hence, the state vector of the UAV-mounted receiver is given by xrU =
[

r
T

rU
, ṙT

rU

]T

. The
navigating UAV’s position rrU and velocity ṙrU will be assumed to evolve according to a continuous-time velocity
random walk model [30]. Therefore, the navigating UAV dynamics is modeled according to the discretized model

xrU (k + 1) = FrU xrU(k) +wrU(k), k = 0, 1, 2, . . . , (1)



where wrU is a discrete-time zero-mean white noise sequence with covariance QrU , with
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where T is the sampling time and q̃x and q̃y are the power spectral densities of the continuous-time x– and y–
acceleration noise, respectively.

B. CELLULAR CARRIER PHASE OBSERVATION MODEL

In cellular systems, several known signals may be transmitted for synchronization or channel estimation purposes.
In CDMA systems, a pilot signal consisting of a pseudorandom noise (PRN) sequence, known as the short code, is
modulated by a carrier signal and broadcast by each BTS for synchronization purposes [31]. Therefore, by knowing
the shortcode, the receiver may measure the code phase of the pilot signal as well as its carrier phase, hence forming
a pseudorange measurement to each BTS transmitting the pilot signal. In long-term evolution (LTE) systems,
two synchronization signals (primary synchronization signal (PSS) and secondary synchronization signal (SSS)) are
broadcast by each evolved node B (eNodeB) [32]. In addition to the PSS and SSS, a reference signal known as
the cell-specific reference signal (CRS) is transmitted by each eNodeB for channel estimation purposes [32]. The
PSS, SSS, and CRS may be exploited to draw carrier phase and pseudorange measurements on neighboring eNodeBs
[33,34]. In the rest of this paper, it is assumed that Doppler frequency measurements are available to cellular CDMA
or LTE signals (e.g., from specialized navigation receivers [9, 35–38]).

The continuous-time carrier phase observable can be obtained by integrating the Doppler measurement over time
[27]. The carrier phase (expressed in cycles) made by the i-th receiver on the n-th SOP is given by

φ(i)
n (t) = φ(i)

n (t0) +

∫ t

t0

f
(i)
Dn

(τ)dτ, n = 1, . . . , N, (2)

where f
(i)
Dn

is the Doppler measurement made by the i-th receiver on the n-th cellular SOP, φ
(i)
n (t0) is the initial

carrier phase, and N is the total number of SOPs. In (2), the index identifier i denotes either the base (B) or the
UAV (U), which are discussed in Subsection III-A. Assuming a constant Doppler during a subaccumulation period
T , (2) can be discretized to yield

φ(i)
n (tk) = φ(i)

n (t0) +

k−1
∑

l=0

f
(i)
Dn

(tl)T, (3)

where tk , t0 + kT . In what follows, the time argument tk will be replaced by k for simplicity of notation. Note
that the receiver will make noisy carrier phase measurements. Adding measurement noise to (3) and expressing the
carrier phase observable in meters yields

z(i)n (k) = λφ(i)
n + λT

k−1
∑

l=0

f
(i)
Dn

(l) + v(i)n (k), (4)

where λ is the carrier signal wavelength and v
(i)
n is the measurement noise, which is modeled as a discrete-time zero-

mean white Gaussian sequence with variance
[

σ
(i)
n (k)

]2

, which can be shown for a coherent second-order phase-locked

loop (PLL) to be given by [27]
[

σ(i)
n (k)

]2

= λ2 Bi,PLL

C/N0n(k)
,

where Bi,PLL is the receiver’s PLL noise equivalent bandwidth and C/N0n is the cellular SOP’s measured carrier-to-
noise ratio. Note that a coherent PLL may be employed in CDMA and LTE navigation receivers since the cellular
synchronization and reference signals do not carry any data. The carrier phase in (4) can be parameterized in terms
of the receiver and cellular SOP states as

z(i)n (k) = ‖rri(k)− rsn‖2
+ c · [δtri(k)− δtsn(k)] + λN (i)

n + v(i)n (k), (5)



where rri , [xri , yri ]
T
is the receiver’s position vector; rsn , [xsn , ysn ]

T
is the cellular BTS’s position vector; c is the

speed of light; δtri and δtsn are the receiver’s and cellular BTS’s clock biases, respectively; and N
(i)
n is the carrier

phase ambiguity.

III. NAVIGATION WITH SOP CARRIER PHASE DIFFERENTIAL CELLULAR MEASURE-

MENTS

In this section, a framework for CD-cellular navigation is developed.

A. CD-CELLULAR FRAMEWORK

The framework consists of a navigating UAV and a reference receiver in an environment comprising N cellular BTSs.
The UAV and reference receiver are assumed to be listening to the same BTSs with the BTS locations being known.
The reference receiver, referred to as the base (B), is assumed to have knowledge of its own position state, e.g., a
stationary receiver deployed at a surveyed location. Note that instead of a stationary receiver, the base may be
another UAV with access to GNSS and a high-end sensor suite enabling to know its location precisely (e.g., high-
flyer). The navigating UAV (U) does not have knowledge of its position nor its velocity. The base communicates its
own position and carrier phase observables with the UAV. Fig. 1 illustrates the base/UAV framework.
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Fig. 1. Base/UAV framework. The base could be either a stationary receiver or another UAV.

In what follows, the objective is to estimate the UAV’s position, which will be achieved by double-differencing the
measurements (5). Without loss of generality, let the measurements to the first SOP be taken as references to form
the single difference

z
(i)
n,1(k) , z(i)n (k)− z

(i)
1 (k).

Subsequently, define the double difference between U and B as

z
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(U)
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(U,B)
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where n = 1, . . . , N , hn,1
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1 (k). Define the vector of measurements as

z(k) , h [rrU(k)] + λN + v(k),



where
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where v(k) has a covariance RU,B(k) which can be readily shown to be

RU,B(k) = R(1)(k) +

{

[

σ
(B)
1 (k)

]2

+
[

σ
(U)
1 (k)
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Ξ,
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σ
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N (k)
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and Ξ is a matrix of ones.

B. BATCH SOLUTION

The vector N is now a vector of integers and has to be solved for along with the UAV’s position. Using only one set
of carrier phase measurement with no a priori knowledge on the UAV position results in an underdetermined system:
(N + 1) unknowns with only (N − 1) measurements. In GNSS, when no a priori information on the position of the
UAV (rover) is known, the UAV could remain stationary for a period of time such that enough variation in satellite
geometry is observed. Subsequently, the UAV (rover) uses measurements collected at different times in a batch
estimator, resulting in an overdetermined system [27]. Other approaches to deal with integer ambiguity resolution
for GNSS include [39]. However, cellular SOP transmitters are stationary. Hence, no variation in geometry will be
observed unless the navigating UAV is moving. In this case, cellular carrier phase measurements collected at several
time-steps could be used in a batch estimator to solve for the positions of the UAV over the different time-steps as
well as for the integer ambiguities. Denote K the number of time-steps in which carrier phase measurements are
collected to be processed in a batch. Then, the total number of measurements will be K × (N − 1), while the total
number of unknowns will be 2K +N − 1. Note that for N ≥ 3, the resulting system is overdetermined for K ≥ 3.

Define the collection of measurements from time-step 0 to K − 1 as

zK ,
[

z
T(0), . . . , zT(K − 1)

]T

,

which can be expressed as
zK = h
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where vK is the overall measurement noise with covarianceRK , blkdiag [RU,B(0), . . . ,RU,B(K − 1)], where blkdiag
is a block-diagonal matrix. A weighted nonlinear least-squares (WNLS) estimator is used to estimate rKrU along with
the float solution of N . Then, an integer least-squares (ILS) estimator is employed to fix the integer ambiguities
N and the estimate of rKrU is subsequently corrected using the fixed ambiguities. However, the WNLS has to be
initialized properly such that 1) the measurement Jacobian with respect to the receiver positions is full column-rank
and 2) the WNLS converges to the right basin of attraction. In order to provide a proper initialization, an extended
Kalman filter (EKF) will be used to estimate rKrU and N for some K ≥ 3. Next, the EKF estimates are used to
initialize the batch WNLS. For k > K, the fixed ambiguities are used to estimate the UAV’s position rrU(k). The
EKF model is discussed next.



C. EKF MODEL

Define the vector x ,
[

x
T

rU
,NT

]T

as the state vector to be estimated. Note that at this point, only the float solution
of N is estimated. The EKF will produce an estimate x̂(k|j), i.e., an estimate of x(k) using all measurements up to
time-step j ≤ k, along with an estimation error covariance P(k|j) , E

[

x̃(k|j)x̃T(k|j)
]

where x̃(k|j) , x(k)− x̂(k|j)
is the estimation error. The EKF estimate and covariance time update equations are readily obtained from (1) and
are given by

x̂(k + 1|k) = Fx̂(k|k), P(k + 1|k) = FP(k|k)FT +Q,
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,

where ǫ is some small positive number that ensures that Q is positive definite [40,41]. The EKF state and covariance
measurement update is performed according to

x̂(k + 1|k + 1) = x̂(k + 1|k) +Kν(k + 1), P(k + 1|k + 1) = [I−KH]P(k + 1|k),
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and 1N−1 is an (N − 1)× 1 vector of ones.

D. EKF INITIALIZATION

In order to initialize the EKF, i.e., obtain x̂(0|0) and P(0|0), a centroid positioning method is used based on the
hearable cell IDs [42]. To this end, the UAV position is initialized at the centroid of the SOP positions, denoted rc.
The UAV initial position’s 3σ bound is set to be the maximum distance at which the SOP signals can be acquired
and tracked reliably by the receiver, which from experimental results was determined to be 7 km. The initial velocity
is set to zero and its corresponding 3σ bound is set to be that of the maximum velocity with which the UAV can fly
(e.g., specified by the manufacturer’s specification sheet). The initial estimate and uncertainty of the float solution
of N can be deduced from the initial position estimates and z(0).

IV. SIMULATION RESULTS

In this section, the following aspects of the framework described in Section III are studied through Monte Carlo
simulations: 1) the effect of K on the navigation performance and 2) and the effect of N on the navigation perfor-
mance. A total of 500 Monte Carlo runs were performed and the total position root mean-squared error (RMSE)
was calculated for each value of N and K. The BTS layout, the base’s position, and a sample UAV trajectory are
plotted in Fig. 2. The UAV was set to start at the same initial position indicated in Fig. 2 for all the Monte
Carlo runs. The cellular carrier phase measurements were simulated at 1 Hz for both receivers. The total position
RMSEs are shown in Fig. 3 for varying values of N and K. Note that the Least-Squares AMBiguity Decorrelation
Adjustment (LAMBDA) method [43] implemented at the Delft University of Technology was used to solve for the
integer ambiguities [44].

The following can be deduced from Fig. 3. First, it can be readily seen, as expected, that the total RMSE decreases
as K and N increase. However, the decrease in RMSE becomes less significant for large values of K and N . For a



UAV's Initial PositionBTS 1

BTS 5

BTS 4

BTS 6

BTS 7

BTS 3

BTS 2

BTS 8

Sample UAV Trajectory

1 km

BTS 9

Base's Position

Fig. 2. The BTS layout, the base’s position, and a sample UAV trajectory used for 500 Monte Carlo runs.

10 20 30 40 50 60 70 80 90

0

10

20

30

10 20 30 40 50 60 70 80 90

0

0.5

1

1.5

2

Fig. 3. Total position RMSEs for 500 Monte Carlo runs of the CD-cellular framework described in Section III for varying values of K
and N .

given K, the change in the RMSE becomes very small when N ≥ 8. For a given N , the change in RMSE becomes
very small when K ≥ 60. Subsequently, when 8 or more BTSs are available, little improvement is expected over
K ≥ 60. Second, to achieve centimeter-level performance for a reasonable value of K, e.g., for K ≤ 60, 6 or more
BTSs are needed.

V. CD-CELLULAR NETWORK DESIGN

In this section, preliminary CD-cellular network design considerations and a feasible base architecture are discussed.

A. NUMBER OF BASES AND PLACEMENT

In order to determine the number of bases needed in an area A, the minimum distance d0 above which received
cellular signals become unreliable for navigation must be determined. In this paper, reliable signals are defined as
signals received at a C/N0 above 35 dB-Hz on average [45]. Experimental data collected in a semi-urban environment
in Colton, California, shows that d0 in such environments is 6 km. A C/N0 plot for 9 cellular BTSs within 6 km
of the receiver are shown for a period of 3 minutes in Fig. 4. It can be seen that the C/N0 is above 35 dB-Hz
most of the time for d0 = 6 km. For a true urban environment, it is assumed that the maximum distance is halved.
Moreover, a cellular (hexagonal)-type coverage for each base is considered since it was proven efficient in cellular
systems. Subsequently, 0.0107 bases/km2 will be needed in a semi-urban environment and 0.0428 bases/km2 will be
needed in a true urban environment. To put things into perspective, 52 bases will be needed to cover the 1,214 km2

land area of the city of Los Angeles, California.

B. COMMUNICATION REQUIREMENTS AND SYNCHRONIZATION

The base can produce carrier phase observables from cellular signals at a rate of 100 Hz. In typical navigation
systems, pseudorange or carrier phase updates are usually performed at up to 10 Hz. However, even at 100 Hz, these
rates can be trivially achieved using today’s wireless technology. Moreover, cellular base stations are required to be
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of all the cellular BTSs measured by the UAV. The C/N0 measured by the base were of

similar values.

synchronized to within 10 µs from GPS time. Subsequently, the base and UAV can align the observables in time
based on the cellular system time without introducing significant latencies. Accounting for the distances between
the base and UAV and each base station, a maximum latency of 60 µs could be observed. This latency is way below
the time interval in which navigation observables are being produced and will introduce errors below 8mm in the
CD-cellular measurements.

C. SOFTWARE-DEFINED RADIO ARCHITECTURE

The cellular navigation receiver on-board the base is broken up into three main components. The first component is
the front-end (FE) abstraction layer (FEAL). The FEAL is primarily responsible for interfacing with the FEs which
can be universal software radio peripherals (USRPs). Each type of FE is exposed to the rest of the system as an FE
object (FEO), which consists of certain configuration methods. In the exact implementation, the FEO is responsible
for configuring the various devices using the data provided in the configuration methods. The FEO creates Sample
Frames by reading the sample data from the device. A Sample Frame consists of a vector of complex numbers (the
raw in-phase and quadrature (IQ) components) and a sequence number. The next component is the channel bank
(CB). A CB performs cellular signal acquisition and tracking, which are spread across two different objects. The CB
itself is responsible for conducting acquisition. Once a cellular SOP is acquired, a channel object (CO) is created. A
CO contains all the necessary functions and algorithms necessary to track the signal and produce pseudorange and
carrier phase observables, which are eventually transmitted to the UAV.

The core architecture of the base consists of an array of Pipeline Objects (POs). A PO consists of a single FEO and
a single CB. Data communication between the two objects uses a lockless queue. The data passed between the two
objects is a shared pointer to a sample frame object (SFO), which is a set or raw IQ samples. Then, each of the
outputs of the pipelines are passed to the communication device that will transmit the observables to the UAV. This
architecture is illustrated in Fig. 5.
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FEO CB
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Communication

Device

Fig. 5. Base SDR core architecture.

Each object and component described above are implemented as abstract classes in C++, which can be extended
into more concrete classes depending on the cellular signal structure. For example, a CB can be extended to a cellular



CDMA CB, in which the tracking and acquisition functions are modified according to [37]. This can be applied to
various other objects throughout the base’s SDR. This abstracts the specific cellular SOP signal structure from the
rest of the receiver architecture. Furthermore, each channel within the CBs, the IQ sample gathering function in
the FEO, and the acquisition operation in a CB are set to run in independent threads with different priorities. The
IQ sample gathering threads in the FEO are given the highest priority because of the hardware dependence. This
means that a “slow” channel implementation will not impact the rest of the receiver. Also, each of the components
are decoupled from one another using queues. This allows for simultaneous development of the base’s receiver and its
components independently of the architecture. This is a result of using queues to communicate data, which represent
standard interfaces for each component to interact with.

Due to the relatively large number of hearable SOPs in the base’s environment, the base’s receiver needs to maintain
a high throughput rate. This is achieved using several key technologies. The first is the Single Instruction Multiple
Data (SIMD) technology, which effectively allows the same instruction to be performed on multiple pieces of data in
a single clock cycle. This is implemented as Advanced Vector eXtensions (AVX) on Intel processors. This allows for
multiple samples to be processed simultaneously in a single clock cycle, increasing the throughput tremendously. The
SDR could also leverage multicore processors. Due to the highly parallelizable nature of the receiver’s architecture,
the more cores available to the program, the faster it runs. This is due to the fact that there are generally more
threads than there are cores, creating a backlog of threads that require processor time. The number of threads that
can be executed in parallel increases as the number of cores increases. The receiver uses highly optimized computing
libraries to assist in several calculations. Libraries such as Eigen and FFTW can easily take advantage of SIMD
instructions. In addition, Eigen is compiled to leverage the use of Intel’s Math Kernel Library which contains several
high performance matrix and signal processing operations.

VI. EXPERIMENTAL RESULTS

In this section, experimental results are presented demonstrating centimeter-level-accurate UAV navigation results
using the CD-cellular framework developed in this paper. As mentioned in Section II, only the 2–D position of
the UAV is estimated as its altitude may be obtained using other sensors (e.g., an altimeter). In the following
experiments, the altitude of the UAV was obtained from its on-board navigation system. Moreover, the noise
equivalent bandwidths of the receivers’ PLLs were set to BN,PLL = BM,PLL = BPLL = 3 Hz. In order to demonstrate
the CD-cellular framework discussed in Section III, two Autel Robotics X-Star Premium UAVs were equipped each
with an Ettus E312 USRP, a consumer-grade 800/1900 MHz cellular antenna, and a small consumer-grade GPS
antenna to discipline the on-board oscillator. Note that one UAV acted as a base and the other as a navigating UAV.
The receivers were tuned to a 882.75 MHz carrier frequency (i.e., λ = 33.96 cm), which is a cellular CDMA channel
allocated for the U.S. cellular provider Verizon Wireless. Samples of the received signals were stored for off-line
post-processing. The cellular carrier phase measurements were given at a rate of 37.5 Hz, i.e., T = 0.0267 ms. The
ground-truth reference for each UAV trajectory was taken from its on-board integrated navigation system, which
uses GPS, an inertial measurement unit (IMU), and other sensors. The navigating UAV’s total traversed trajectory
was 1.72 km, which was completed in 3 minutes. Over the course of the experiment, the receivers on-board the
UAVs were listening to 9 BTSs, whose positions were mapped prior to the experiment according to the framework
discussed in [46]. A plot of C/N0 of all the BTSs measured by the UAV is given in Fig. 4. The base measured
similar C/N0 values.

The CD-cellular measurements were used to estimate the navigating UAV’s trajectory via the base/UAV framework
developed in Section III. The experimental setup, the SOP BTS layout, and the true (from the UAV’s on-board
integrated navigation system) and estimated (from the proposed CD-cellular) navigating UAV trajectories are shown
in Fig. 6. The position RMSE was found to be 62.11 cm over a trajectory of 1.72 km flown over a period of 3
minutes. The LAMBDA method was used to solve for the integer ambiguities [44].

It is important to note that the RMSE was calculated with respect to the trajectory returned by the UAV’s on-board
navigation system. Although these systems use multiple navigation sensors, they are not equipped with high-precision
GPS receivers, e.g., RTK. Therefore, some errors are expected in what is considered to be “true” trajectories taken
from the UAV’s on-board navigation system. Moreover, the base was mobile during the experiment and the position
returned by its on-board navigation system was used as ground-truth. Consequently, any errors in the base’s GPS
solution would have degraded the navigating UAV’s estimate.
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VII. CONCLUSION

This paper proposed a framework for UAV navigation with CD-cellular measurements. The framework requires
no prior knowledge of the UAV’s position and achieves centimeter-level accuracy. Monte Carlo simulations were
presented to characterize the performance of the proposed framework as a function of the total number of hearable
BTSs and the size of the batch estimator. A preliminary study of a CD-cellular network design in terms of number of
bases needed, communication and synchronization requirements, and software and hardware considerations for real-
time implementation was provided. Experimental results were presented demonstrating a UAV navigating exclusively
using the proposed framework over a 1.72 km trajectory completed in 3 minutes with 62.11 cm RMSE.
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