Praneeth Kandlakunta, Ph.D.

Research Associate 2-Engineer Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University 201 W 9th Avenue, Columbus, OH 43210. Email: <u>kandlakunta.1@osu.edu</u>; Cell phone: 954-504-2697

Education:

Received Doctor of Philosophy degree in Nuclear Engineering from The Ohio State University in May 2014. Dissertation: <u>Gamma-rays Rejection in a Gadolinium based Semiconductor Neutron Detector</u>

Received Master of Science degree in Nuclear Engineering from The Ohio State University in June 2012. Thesis: <u>A Proof-of-Principle Investigation for a Neutron-Gamma Discrimination Technique in a</u> <u>Semiconductor Neutron Detector</u>

Received Bachelor of Engineering (Honors) degree in Electronics and Instrumentation Engineering from Birla Institute of Technology and Science-Pilani, India in December 2008.

Research and Professional Experience:

Research Associate 2-Engineer, Nuclear Engineering Program2020 – PresentResearch Associate 1-Engineer, Nuclear Engineering Program2018 – 2020Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbus, OH 43210Columbus, OH 43210

Responsibilities:

- Writing proposal applications to seek funding and helping with proposal preparation
- **4** Supervising graduate and undergraduate students in research.
- **4** Conducting research

Projects:

- Evaluation of a single crystal perovskite detector for X-ray sensitivity and gamma-ray response.
- Development of a fast-switching X-ray source based on a pulsed UV LED, photocathode, and electron multiplier.
 - > **<u>Principal Investigator</u>** on this project.
 - Designed and constructed a high-vacuum system
 - Designed and constructed the X-ray tube geometry consisting of the LED, photocathode, electron multiplier and copper anode
 - > Installed a remotely operable high voltage power supply for the anode
- Evaluation of X-ray sensitivity of thin-film perovskite devices.
- Evaluation of Li-doped perovskite sensor response to thermal neutrons
- Evaluation of solar photovoltaic device response to neutrons and gamma-rays, and study of gamma-radiation effects in solar cells.
- Evaluation of silicon carbide (SiC) detectors for monitoring trace amounts of uranium and plutonium using alpha spectroscopy.
- Evaluation of solar photovoltaic cells for detection of ionizing radiation

- Experimental study of solar cell response to X-rays, gamma-rays, and neutrons. Monte Carlo and finite element simulations of radiation interactions and charge transport.
- Built a pulsed X-ray testing apparatus to evaluate transient response of semiconductor sensors to X-rays.
- Built a pulsed laser testing apparatus to evaluate fast transient response of solar photovoltaic cells
- Characterization of SiC semiconductor devices and SiC detectors for charged particle detection. Evaluation of SiC detectors for fast and thermal neutron monitoring using reactor experiments and Monte Carlo simulations.
- Evaluation of new scintillator materials using photoluminescence and radioluminescence measurements.
- Evaluation of a SiC based nuclear voltaic device
- Evaluation of a self-powered neutron detector (SPND) for in-core neutron flux monitoring.
- Design and construction of a vacuum chamber apparatus for radiation measurements and sensor characterization study (Advised)

Postdoctoral Research Associate, Department of Radiation Oncology 2015 – 2018

Washington University in St. Louis – School of Medicine St. Louis, MO 63110

- Design of a new X-ray transmission target for high power distributed X-ray sources Monte Carlo simulations and Finite Element thermal modeling of a composite X-ray target for design optimization.
- Development of a multiple-pixel thermionic emission x-ray source Construction of X-ray tube hardware and instrumentation including control electronics; finite element thermal modeling of X-ray target, anode and insulation; design, fabrication and characterization of oxide-coated cathodes.
- Development of a new detector array for proton dose verification in proton beam QA.
- Monte-Carlo simulations of a novel design of prompt gamma-ray detector for in-vivo proton range verification in proton beam therapy.
- Monte Carlo modeling and simulations of a LINAC treatment head for radiation therapy dose evaluation.

2013 - 2014

2010 - 2013

• Supervised undergraduate students on research projects

Nuclear Engineer

MP Machinery and Testing, LLC. State College, Pennsylvania

• Performed neutron transport calculations and analysis using discrete ordinates transport codes for nuclear utility plants.

Graduate Research Associate, Nuclear Engineering Program

Department of Mechanical and Aerospace Engineering The Ohio State University Columbus, OH 43210

- Proposed and validated a gamma-ray discrimination method for gadolinium based semiconductor neutron detector using Monte-Carlo simulations and experiments.
- Developed and characterized a lithium-6 scintillator glass based neutron beam monitor for the neutron beam facility at the OSU Research Reactor

• Designed and constructed a vacuum chamber based digital spectroscopy instrumentation system for radiation measurements and detector evaluation

Student Research Assistant, Nuclear Engineering Program

Department of Mechanical and Aerospace Engineering The Ohio State University Columbus, OH 43210

• Performed preliminary study and measurements for neutron noise analysis for core component vibration monitoring. Assisted in experiments and other research tasks.

Software Engineer

Invensys India Development Center, Hyderabad, India.

• Responsible for conducting tests to detect issues in product application software – InTouch and ArchestrA

Project Trainee in Digital Electronic Design

Texas Instruments (India) Pvt. Ltd. Bangalore, India.

- Performed power consumption analysis of a DDR memory system.
- Developed RTL design in Verilog HDL for an algorithm on reduction of external memory power in a high-definition video processing system. Verified the RTL design with Verilog test bench simulations and synthesized the design in Design Compiler to generate timing and area reports.

Honors

- BEST IN PHYSICS Award for abstract submitted to 2016 AAPM Annual Meeting
- Excellence in Research Award OSU Nuclear Engineering Program, 2013
- Alpha Nu Sigma National Honor Society Membership

Focused Research

- Nuclear Instrumentation and Radiation Detection Applications
- Monte Carlo Simulations and Modeling of Radiation Interaction with Materials
- WBG Semiconductor Radiation Sensors
- Pulsed X-ray Sources
- X-ray Imaging

Research Advisee (Co-Advising)

- Neil Taylor, Ph.D. (2021)
- Lei Pan, Ph.D. (2021)
- Jarod Remy, Graduate Student
- Wyatt Panaccione, Graduate Student
- Alexander Safranek, Graduate Student
- Daryl Giglio, Graduate Student
- Matt Bisbee, Graduate Student
- Christopher Heckert, Graduate Student

2008 – 2009

2010 - 2010

2008 - 2008

- Zuolong Zhu, Graduate student
- Andrew Maier, B.S. (2022)
- Zachary Dancoes, B.S. (2022)
- Nathan Smith, B.S. (2020)
- James Midkiff, Undergraduate Student

Courses

• Guest Lectures on Nuclear Radiation and Their Measurement – Monte Carlo Modeling and Simulations (graduate level)

Membership

- American Nuclear Society, 2010 to 2014 and 2018-Present
- IEEE, IEEE Nuclear and Plasma Sciences Society, 2012 to 2013, 2020 to Present
- American Association of Physicists in Medicine, 2015-2018

Contributions to ANS National Meetings

2019 Session Chair, "Radiation Detection and Imaging," American Nuclear Society (ANS) Winter Meeting Nov 12-17, 2019, Washington, DC, United States.

Journal Publications (total 20, of which 8 as first author):

- 1. <u>Kandlakunta P</u>, Van Zile M, Cao LR. "Silicon Solar Cells for Post-detonation Monitoring and Gamma-Radiation Effects." *Nuclear Science and Engineering* (Accepted, in production).
- 2. Dai X, Fei C, **Kandlakunta P**, Zhao L, Ni Z, Cao LR, Huang J. "Origin of the X-ray Induced Damage in Perovskite Solar Cells" *IEEE Transactions on Nuclear Science*. 2022 July 12. doi: 10.1109/TNS.2022.3190200.
- 3. Cao G, Larson N, Storms B, **Kandlakunta P**, Cao LR, Li S. "Gamma-ray spectra analyses of molten salts in spent nuclear fuels pyroprocessing facilities for mass measurement." *Journal of Radioanalytical and Nuclear Chemistry* **331**, 3085–3091 (2022).
- Taylor NR, Ji M, Pan L, Kandlakunta P, Kravchenko I, Pooran J, Aytug T, Paranthaman MP, Cao LR. "Large area vertical Ga₂O₃ Schottky diodes for X-ray detection." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*. 2021 Jul 18:165664.
- Pan L, Kandlakunta P, Van Zile M, Dai X, Huang J, McClory JW, Cao LR. "Acquiring and Modeling of Si Solar-Cell Transient Response to Pulsed X-Ray." *IEEE Transactions on Nuclear Science*. 2021 Mar 18; 68(5):1152-60.
- Holmes J, Brown J, Koeck FA, Johnson H, Benipal MK, Kandlakunta P, Zaniewski A, Alarcon R, Cao R, Goodnick SM, Nemanich RJ. "Performance of 5-μm PIN diamond diodes as thermal neutron detectors." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*. 2020 May 1;961:163601.
- Kandlakunta P, Tan C, Smith N, Xue S, Taylor N, Downing RG, Hlinka V, Cao LR. "Silicon carbide detectors for high flux neutron monitoring at near-core locations." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.* 2020 Feb 11;953:163110.
- 8. Pan L, Feng Y, **Kandlakunta P**, Huang J, Cao LR. "Performance of Perovskite CsPbBr 3 Single Crystal Detector for Gamma-Ray Detection." *IEEE Transactions on Nuclear Science*. 2020 Jan 7;67(2):443-9.

- 9. Taylor NR, Kuang W, Saeidijavash M, **Kandlakunta P**, Zhang Y, Cao LR. "Direct printing of metal contacts on 4H-SiC for radiation detection" *AIP Advances*. 2019 Sep 24;9(9):095041.
- Xue S, Tan C, Kandlakunta P, Oksuz I, Hlinka V, Cao LR "Methods for improving the power conversion efficiency of nuclear-voltaic batteries" *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.* 2019 May 21;927:133-139.
- 11. Wang J, Chen L, Persson M, Rajbhandary PL, **Kandlakunta P**, Carini G, Fahrig R "Pulse pileup analysis for a double-sided silicon strip detector using variable pulse shapes" *IEEE Transactions on Nuclear Science*, vol. 66, no. 6, pp. 960-968, June 2019.
- 12. Taylor NR, Alnajjar N, Jarrell J, **Kandlakunta P**, Simpson M, Blue TE, Cao LR. "Isotopic concentration of uranium from alpha spectrum of electrodeposited source on 4H-SiC detector at 500° C" *Journal of Radioanalytical and Nuclear Chemistry*, 2019 May 15;320(2):441-9.
- <u>Kandlakunta P</u>, Momin S, Sloop A, Zhang T, Khan R. "Characterizing a Geant4 Monte Carlo model of a multileaf collimator for a TrueBeam[™] linear accelerator." *Physica Medica*, 2019 Mar 1;59:1-2.
- 14. <u>Kandlakunta P</u>, Thomas A, Tan Y, Khan R, Zhang T. "Design and numerical simulations of Wdiamond transmission target for distributed x-ray sources." *Biomedical Physics & Engineering Express.* 2019 Jan 24;5(2):025030.
- 15. Yang S, Xu Z, Xue S, **Kandlakunta P**, Cao L, Huang J. "Organohalide Lead Perovskites: More Stable than Glass under Gamma-Ray Radiation." *Advanced Materials*. 2018 Nov 28:1805547.
- Chuirazzi WC, Oksuz I, Kandlakunta P, Massey TN, Brune CR, Cherepy NJ, Martinez HP, Cao L. "Evaluation of polyvinyl toluene scintillators for fast neutron imaging" *Journal of Radioanalytical and Nuclear Chemistry*. 2018 October; 318(1): 543-51.
- 17. <u>Kandlakunta P</u>, Pham R, Khan R, Zhang T. "Development of multi-pixel x-ray source using oxide-coated cathodes" *Physics in Medicine & Biology*, 2017 Jun 13;62(13):N320.
- 18. <u>Kandlakunta P</u>, Cao LR. "Neutron conversion efficiency and gamma interference with gadolinium" *Journal of Radioanalytical and Nuclear Chemistry*, 2014 Jun 1;300(3):953-61.
- 19. <u>Kandlakunta P</u>, Cao LR, Mulligan P. "Measurement of internal conversion electrons from Gd neutron capture." *Nuclear Instruments and Methods in Physics Research Section A*, **705**, 36 (2013).
- 20. <u>Kandlakunta P</u>, Cao L. "Gamma-Ray Rejection, Or Detection, with Gadolinium as a Converter," *Radiation Protection Dosimetry*, **151** (3), 2012, 586-590.

Patents:

- 1. Zhang T, **Kandlakunta P**, inventors; Washington University in St Louis WUSTL, assignee. "Multi-pixel x-ray source with tungsten-diamond transmission target." *United States Patent US* 11,289,301. 2022 Mar 29.
- 2. Cao LR, **Kandlakunta P**, inventors; The Ohio State University. "A tritium sensor with tritiumhydrogen differentiation for reactors, fuel cycles, medicine, and nuclear applications." *Patent Pending*.

Book Chapter:

• Pan L, Kandlakunta P, Cao LR. "Inorganic Perovskite CsPbBr3 Gamma-Ray Detector." In *Advanced Materials for Radiation Detection* 2022 (pp. 33-54). Springer, Cham.

Conference Proceedings and Extended Abstract

- 1. **Kandlakunta P**, Van Zile M, Cao LR. "Solar Photovoltaic Device Response to Gamma-ray Irradiation." *2021 ANS Winter Meeting and Technology Expo.* Nov. 30–Dec. 3, 2021. Washington DC.
- 2. **Kandlakunta P**, Van Zile M, Pan L, McClory J, Huang J, Cao LR. "Radiation monitoring and radiation effects in solar photovoltaic panels." *2021 IEEE SORMA West-Virtual Meeting* (Abstract and Oral Presentation).
- 3. Cao LR, Pan L, **Kandlakunta P**, Nie W. "Perovskite detectors for x-ray imaging and gamma spectroscopy: overview and current state-of-the-art." In *Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXIII* 2021 Aug 4 (Vol. 11838, p. 118380B). International Society for Optics and Photonics.
- 4. **P. Kandlakunta**, X. Dai, J. Midkiff, M. Van Zile, L. Pan, J. Huang, J. McClory, L. R. Cao, "Solar Photovoltaic Devices as Radiation Sensors for Post-detonation Nuclear Forensics," *IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) Record*, Nov 2020.
- 5. Oksuz I, Van Zile M, Bisbee M, Kauffman A, Hatch J, Kandlakunta P, Cherepy NJ, Cao LR. "Characterization of a reactor-based fast neutron beam facility for fast neutron imaging." In *Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXII* 2020 Aug 20 (Vol. 11494, p. 114940T). International Society for Optics and Photonics.
- 6. **Kandlakunta Praneeth**, Chuting Tan, Nathan Smith, Sha Xue, Neil Taylor, R. Gregory Downing, Vasil Hlinka, and Lei R. Cao. "High Flux Neutron Detection Using Silicon Carbide from Near-core Locations." *Transactions of the American Nuclear Society* 121, no. 1 (2019): 427-430.
- 7. **Praneeth Kandlakunta**, Lei Cao, "Neutron-Gamma Separation in a Gadolinium based Semiconductor Neutron Detector." *Transactions of the American Nuclear Society*, Reno, NV, USA (2014).
- 8. Lei Cao, **Praneeth Kandlakunta**, "Measure Internal Conversion Electron Spectrum of Gadolinium Neutron Capture Using Neutron Beam", *Transactions of the American Nuclear Society*, Atlanta, GA, USA (2013).
- 9. **Praneeth Kandlakunta**, Padhraic Mulligan, Danyal Turkoglu, Lei Cao, "A Neutron Flux Monitor for a Reactor Neutron Beam Facility", *IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) Record*, Anaheim, CA, USA (2012).
- 10. **Praneeth Kandlakunta**, Danyal Turkoglu, Padhraic Mulligan, Lei Cao, "A Neutron Beam Monitor for a Neutron Depth Profiling Facility." *Transactions of the American Nuclear Society*, Chicago, IL, USA (2012).
- 11. J. Ralston, **P. Kandlakunta**, L. Cao, "Electron Emission Following 157Gd Neutron Capture." *Transactions of the American Nuclear Society*, Chicago, IL, USA (2012).
- 12. **Praneeth Kandlakunta**, Lei Cao. "A Neutron Detector with Gamma Discrimination." *Transactions of the American Nuclear Society*, Vol. 105, Washington, D.C., USA. (2011):335-336.
- 13. Padhraic L. Mulligan, Danyal J. Turkoglu, **Praneeth Kandlakunta**, Lei Cao. "Improving Neutron Depth Profiling at The Ohio State University Using Multiple Detectors." *Transactions of the American Nuclear Society*, Vol. 104, Hollywood, FL, USA (2011): 227-229.
- Jinghui Wang, Praneeth Kandlakunta, Thomas F. Kent, John Carlin, Daniel R. Hoy, Roberto C.Myers, Lei Cao. "A Gadolinium Doped Superlattice GaN Schottky Diode for Neutron Detection." *Transactions of the American Nuclear Society*, Vol. 104, Hollywood, FL, USA (2011): 207-209.
- 15. D. Turkoglu, **P. Kandlakunta**, P. Mulligan, L. Cao, J. Zhang, B.T. Sang, R.G. Downing, "Development of a Neutron Depth Profiling Facility for Characterizing Advanced Reactor Materials," *Transactions of the American Nuclear Society*, Vol. 103, Hollywood, FL, USA (2011).

- D. Turkoglu, J. Strah, P. Kandlakunta, L. Cao. "Development of an External Neutron Beam Facility at The Ohio State University." *Transactions of the American Nuclear Society*, Vol.102, Las Vegas, NV, USA (2010).
- Tan, Y., P. Kandlakunta, R. Liu, S. Zhou, T. Zhao, and T. Zhang. "Transmission W-Diamond X-Ray Target for High Brightness Microfocus X-Ray Sources." In *MEDICAL PHYSICS*, vol. 46, no. 6, pp. E301-E301. 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY, 2019.
- Zhang, T., P. Kandlakunta, X. Chen, Y. Tang, and A. Thomas. "X-Ray Field Imaging with a Linear Scan X-Ray Source and Linear Detector Array." In *MEDICAL PHYSICS*, vol. 45, no. 6, pp. E536-E537. 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY, 2018.
- Kandlakunta, P., Y. Tang, A. Thomas, and T. Zhang. "A W-Diamond Transmission Target for Multi- Pixel X-Ray Sources with a Stationary Anode." In *MEDICAL PHYSICS*, vol. 45, no. 6, pp. E370- E370. 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY, 2018.
- Khan, Rao, Praneeth Kandlakunta, and Tiezhi Zhang. "Use of tessellated geometry for improved linac design and modeling in Monte Carlo simulations: poster Reception-19." *Medical Physics*, 44, no. 8 (2017): 4378.
- Rao, W., R. Pham, P. Kandlakunta, M. Anastasio, and T. Zhang. "Development and Evaluation of Iterative CT Image Reconstruction in Cylindrical Image Coordinate: su-f-201-02." *Medical Physics*, 44, no. 6 (2017): 2758-2759.
- Kandlakunta, P., T. Zhang, S. Mutic, and R. Khan. "A Comprehensive Geant4 Monte Carlo Model of Multileaf Collimator for Varian Truebeam Linac: su-i-gpd-t-351." *Medical Physics*, 44, no. 6 (2017): 2909.
- Kandlakunta, P., R. Pham, W. Rao, R. Khan, and T. Zhang. "Thermal Analysis of a Stationary Target of X-ray Sources Operating in Pulse Mode: su-k-702-02." *Medical Physics*, 44, no. 6 (2017): 3017.
- 24. Pham, R., W. Rao, **P. Kandlakunta**, M. Anastasio, and T. Zhang. "Joint Image Domain Motionestimation and Motion-compensation for 4d Cone Beam Computed Tomography Image Reconstruction: th-ab-601-07." *Medical Physics*, 44, no. 6 (2017): 3284.
- 25. **Kandlakunta, P.**, R. Pham, and T. Zhang. "TH-CD-207B-01: BEST IN PHYSICS (IMAGING): Development of High Brightness Multiple-Pixel X-Ray Source Using Oxide Coated Cathodes." *Medical physics*, 43, no. 6Part46 (2016): 3888-3889.
- 26. Pham, R., Sun, B., Zhao, T., Li, H., Yang, D., Grantham, K., Goddu, S., Santanam, L., Bradley, J., Mutic, S., Kandlakunta, P. and Zhang, T. (2016), SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow. *Medical Physics*, 43: 3452-3453.

Synergistic Activities

Proposal Reviewer:

U.S. Department of Energy Phase I&II Release 1&2 SBIR/STTR Proposals

U.S. Department of Energy NEUP Consolidated Innovative Nuclear Research Proposals

Journal Reviewer:

IEEE Transactions on Nuclear Science Nuclear Instruments and Methods in Physics Research A Medical Physics Journal of Applied Physics Journal of Physics: D Applied Physics Nuclear Engineering and Technology Journal of Radioanalytical and Nuclear Chemistry